scholarly journals Usefulness of real-time PCR assay targeting lipL32 gene for diagnosis of human leptospirosis in Uruguay

2013 ◽  
Vol 7 (12) ◽  
pp. 941-945 ◽  
Author(s):  
Sabina González ◽  
Juan Pablo Geymonat ◽  
Elba Hernández ◽  
Juan Martín Marqués ◽  
Felipe Schelotto ◽  
...  

Introduction: Assays based on DNA amplification can provide information that contributes to the initial management of patients with leptospirosis. However, these have not been adopted in Uruguay. Our aim was to evaluate the performance of the lipL32 real-time PCR (qPCR) for diagnosis of leptospirosis. Methodology: We analyzed by microscopic agglutination test (MAT) and lipL32 qPCR serum samples from 183 patients with suspected leptospirosis. To establish the analytical sensitivity of the qPCR, experimentally spiked samples with known amounts of Leptospira interrogans were analyzed. Results: The analytical sensitivity of the qPCR was 102 leptospires/mL. In 98 patients MAT results were negative meanwhile 85 showed positive reactions, revealing acute infections. Twenty six acute-phase sera of these 85 patients showed a positive signal by qPCR (diagnostic sensitivity 30%). In these patients the average time between onset of symptoms and collection of the first sample was 8 days. In patients with negative results for qPCR and positive MAT results (n=59) the average interval between onset of symptoms and collection of the first sample was 13 days. The qPCR did not yield false positive results. Conclusions: The qPCR had a lower diagnostic sensitivity than MAT and a higher cost. However, it allowed to make an early diagnosis in 26 patients. In patients with confirmed acute infections and negative results by qPCR, more than 8 days had elapsed between the onset of the illness and extraction of the first serum sample. Our data support that the qPCR from sera have clinical utility within the first week of illness.

2009 ◽  
Vol 72 (11) ◽  
pp. 2433-2435 ◽  
Author(s):  
HAIYAN WANG ◽  
FEI YUAN ◽  
YAJUN WU ◽  
HAIRONG YANG ◽  
BAOLIANG XU ◽  
...  

A real-time PCR method aimed at the gene sequence of the walnut vicilin-like seed storage protein was established for the detection of the allergen walnut in food. The primers and probe were designed based on published methods. The method provided positive results for walnut and negative results for other tested agricultural plant materials including pecan. The intrinsic detection limit of the method was 0.00125 ng of walnut DNA, and the practical detection limit was 0.001% (wt/wt) walnut content in wheat; both of these values are lower than that of previously published methods. Therefore, this real-time PCR method is sufficiently specific and sensitive for the detection of walnut component in food.


2017 ◽  
Vol 20 (4) ◽  
pp. 362-369 ◽  
Author(s):  
Rebecca P Wilkes ◽  
Eman Anis ◽  
Dawn Dunbar ◽  
Pei-Yu A Lee ◽  
Yun-Long Tsai ◽  
...  

Objectives Feline leukaemia virus (FeLV), a gamma retrovirus, causes diseases of the feline haematopoietic system that are invariably fatal. Rapid and accurate testing at the point-of-need (PON) supports prevention of virus spread and management of clinical disease. This study evaluated the performance of an insulated isothermal PCR (iiPCR) that detects proviral DNA, and a reverse transcription (RT)-iiPCR that detects both viral RNA and proviral DNA, for FeLV detection at the PON. Methods Mycoplasma haemofelis, feline coronavirus, feline herpesvirus, feline calicivirus and feline immunodeficiency virus were used to test analytical specificity. In vitro transcribed RNA, artificial plasmid, FeLV strain American Type Culture Collection VR-719 and a clinical FeLV isolate were used in the analytical sensitivity assays. A retrospective study including 116 clinical plasma and serum samples that had been tested with virus isolation, real-time PCR and ELISA, and a prospective study including 150 clinical plasma and serum samples were implemented to evaluate the clinical performances of the iiPCR-based methods for FeLV detection. Results Ninety-five percent assay limit of detection was calculated to be 16 RNA and five DNA copies for the RT-iiPCR, and six DNA copies for the iiPCR. Both reactions had analytical sensitivity comparable to a reference real-time PCR (qPCR) and did not detect five non-target feline pathogens. The clinical performance of the RT-iiPCR and iiPCR had 98.82% agreement (kappa[κ] = 0.97) and 100% agreement (κ = 1.0), respectively, with the qPCR (n = 85). The agreement between an automatic nucleic extraction/RT-iiPCR system and virus isolation to detect FeLV in plasma or serum was 95.69% (κ = 0.95) and 98.67% (κ = 0.85) in a retrospective (n = 116) and a prospective (n = 150) study, respectively. Conclusions and relevance These results suggested that both RT-iiPCR and iiPCR assays can serve as reliable tools for PON FeLV detection.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Akrahm M. Saleh Habil ◽  
Hairul Aini Hamzah ◽  
Muhammad Imad Al-Deen Mustafa ◽  
Norlelawati A. Talib ◽  
Siti Nurul Fazlin Abdul Rahman

Introduction: Rapid quantification of hepatitis C virus is helpful in determining and monitoring of the disease progression and nature of the virus replication. The aim of the present study was to establish a fast, specific and sensitive tool for HCVRNA quantification. Materials and Methods: A total of 50 serum samples, comprising of 40 HCV-positive and 10 HCV-negative, were included in our study. RNA was extracted, reverse transcribed, and then subjected to real-time PCR amplification. Real-time PCR using EvaGreen dye and primers targeting a 5’UTR was carried out. Reference samples with known viral load were treated similarly to the unknown samples and used to create the standard curves. Results: Our method showed a high level of analytical specificity and accuracy, with a low limit of detection (~2 IU/ml). It yielded repeatable results with less than 4% of intra- assay variation. The assay covered a broad dynamic range of quantification, ranging from 0.34 to 6 log IU/ml. The diagnostic sensitivity, specificity, and accuracy were all 100%, indicating neither false positive nor false negative results were obtained. Conclusion: The developed real time PCR using EvaGreen dye has demonstrated a highly analytical and diagnostic performance for HCV quantification, suggesting its potential in clinical diagnosis and management.


2012 ◽  
Vol 75 (9) ◽  
pp. 1572-1579 ◽  
Author(s):  
JUN-ICHI MINAMI ◽  
TAKASHI SOEJIMA ◽  
TOMOKO YAESHIMA ◽  
KEIJI IWATSUKI

The goal of this study was to establish a rapid assay for the specific detection of viable Cronobacter sakazakii in powdered infant formula (PIF). Samples were subjected to treatment multiple times with ethidium monoazide with a concentration gradient (gEMA) prior to PCR to discriminate viable from dead C. sakazakii cells. To improve the current detection limits, we developed a new buffer for direct quantitative real-time PCR (DqPCR) without DNA isolation. Using 17 PIF samples, our rapid assay was compared with the new U.S. Food and Drug Administration (FDA) method published in the Bacteriological Analytical Manual in 2012. Although both the new FDA method and our rapid assay, which consists of DqPCR combined with gEMA (gEMADqPCR), produced negative results for all 17 PIF samples, 5 of the 17 PIFs were positive by DqPCR when they were not treated with EMA. Furthermore, for PIF samples artificially contaminated with viable C. sakazakii, gEMA-DqPCR successfully detected between 1 and 9 CFU of viable C. sakazakii in 300 g of PIF within 9 h, including a 6-h preincubation. Our results indicate that multiple EMA treatments are required to avoid false-positive results due to the contamination of commercial PIF with dead or injured C. sakazakii cells. Our rapid assay may also improve the sensitivity of the screening portion required by the new FDA method published in the Bacteriological Analytical Manual in 2012.


2014 ◽  
Vol 17 (2) ◽  
pp. 367-369 ◽  
Author(s):  
K. Rypula ◽  
A. Kumala ◽  
P. Lis ◽  
K. Niemczuk ◽  
K. Płoneczka-Janeczko ◽  
...  

Abstract The study was carried out in seven reproductive herds of pigs. In three of them reproductive disorders were observed. Three herds consisted of 10-50 and four consisted of 120-500 adult sows and they were called small and medium, respectively. Fifty-seven adult sows were randomly selected from herds. Serum samples were tested using the complement fixation test and swabs from both eyes and from the vaginal vestibule were examined using real-time PCR. All serum samples were negative. Infected sows were present in each of the study herds. In total, there were 28 positive samples (53%, 28/48) in real-time PCR in sows with reproductive disorders and 35 (53%, 35/66) in sows selected from herds without problems in reproduction. One isolate proved to be Chlamydophila pecorum, whereas all the remaining were Chamydia suis


2019 ◽  
Vol 20 (2) ◽  
pp. 6-11
Author(s):  
Aly El-Kenawy ◽  
Mohamed El-Tholoth ◽  
Emad A

In the present study, a total of 16 samples including feather follicle epithelium, ovary, spleen and kidney (4 samples for each organ) were collected from diseased chicken flocks suspected to be infected with Marek’s disease virus (MDV) at Dakahlia Governorate, Egypt during the period from October 2016 to October 2017. Each sample was pooled randomly from three to five birds (90 to 360 days old). The isolation of the suspected virus from the collected samples was carried out via chorioallantoic membranes (CAMs) of 12 days old embryonated chicken eggs (ECEs). Three egg passages were carried out for each sample. Hyperimmune serum was prepared against standard MDV. MDV in both field and egg passaged samples (after 3rd passage) was identified by agar gel precipitation test (AGPT) and indirect fluorescence antibody test (IFAT). Molecular identification of virus was carried out by conventional polymerase chain reaction (PCR) and real- time PCR in four selected samples. The results revealed that 14 samples (87.5%) including 4 (100%) samples from feather follicle epithelium, ovary and kidney and 2 (50%) samples from spleen, showed positive results in virus isolation after 3rd passage. The positive results percentage by AGPT for field samples were 50% (8 out of 16 samples), while after the 3rd passage in ECEs were 37.5% (6 out of 16 samples) and the positive results percentage by IFAT for field samples were 62.5% (10 out of 16 samples), while after the 3rd passage in ECEs were 81.25 % (13 out of 16 samples). Viral nucleic acid was detected in all selected samples by conventional and real- time PCR. The results indicate that feather follicle epithelium is the best organ for MDV detection. IFAT is superior over AGPT in virus detection. Conventional and real - time PCR could be efficiently used for molecular detection of the virus.


2020 ◽  
Vol 18 ◽  
Author(s):  
Pegah Shakib ◽  
Mohammad Reza Zolfaghari

Background: Conventional laboratory culture-based methods for diagnosis of Streptococcus pneumoniae are time-consuming and yield false negative results. Molecular methods including real-time (RT)-PCR rapid methods and conventional PCR due to higher sensitivity and accuracy have been replaced instead traditional culture assay. The aim of the current study was to evaluate lytA gene for detection of Streptococcus pneumoniae in the cerebrospinal fluid of human patients with meningitis using real-time PCR assay. Material and Methods: In this cross-sectional study, a total of 30 clinical specimens were collected from patients in a period from September to December 2018. In order to evaluate the presence of lytA gene, conventional and real-time PCR methods were used without culture. Results: From 30 sputum samples five (16.66%) isolates were identified as S. pneumoniae by lytA PCR and sequencing. Discussion: In this research, an accurate and rapid real-time PCR method was used, which is based on lytA gene for diagnosis of bacteria so that it can be diagnosed. Based on the sequencing results, the sensitivity for detection of lytA gene was 100% (5/5).


2021 ◽  
Vol 9 (5) ◽  
pp. 1031
Author(s):  
Roberto Zoccola ◽  
Alessia Di Blasio ◽  
Tiziana Bossotto ◽  
Angela Pontei ◽  
Maria Angelillo ◽  
...  

Mycobacterium chimaera is an emerging pathogen associated with endocarditis and vasculitis following cardiac surgery. Although it can take up to 6–8 weeks to culture on selective solid media, culture-based detection remains the gold standard for diagnosis, so more rapid methods are urgently needed. For the present study, we processed environmental M. chimaera infected simulates at volumes defined in international guidelines. Each preparation underwent real-time PCR; inoculates were placed in a VersaTREK™ automated microbial detection system and onto selective Middlebrook 7H11 agar plates. The validation tests showed that real-time PCR detected DNA up to a concentration of 10 ng/µL. A comparison of the isolation tests showed that the PCR method detected DNA in a dilution of ×102 CFU/mL in the bacterial suspensions, whereas the limit of detection in the VersaTREK™ was <10 CFU/mL. Within less than 3 days, the VersaTREK™ detected an initial bacterial load of 100 CFU. The detection limit did not seem to be influenced by NaOH decontamination or the initial water sample volume; analytical sensitivity was 1.5 × 102 CFU/mL; positivity was determined in under 15 days. VersaTREK™ can expedite mycobacterial growth in a culture. When combined with PCR, it can increase the overall recovery of mycobacteria in environmental samples, making it potentially applicable for microbial control in the hospital setting and also in environments with low levels of contamination by viable mycobacteria.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ellen Kathrin Link ◽  
Matthias Eddicks ◽  
Liangliang Nan ◽  
Mathias Ritzmann ◽  
Gerd Sutter ◽  
...  

Abstract Background The porcine circovirus type 2 (PCV2) is divided into eight genotypes including the previously described genotypes PCV2a to PCV2f and the two new genotypes PCV2g and PCV2h. PCV2 genotyping has become an important task in molecular epidemiology and to advance research on the prophylaxis and pathogenesis of PCV2 associated diseases. Standard genotyping of PCV2 is based on the sequencing of the viral genome or at least of the open reading frame 2. Although, the circovirus genome is small, classical sequencing is time consuming, expensive, less sensitive and less compatible with mass testing compared with modern real-time PCR assays. Here we report about a new PCV2 genotyping method using qPCR. Methods Based on the analysis of several hundred PCV2 full genome sequences, we identified PCV2 genotype specific sequences or single-nucleotide polymorphisms. We designed six TaqMan PCR assays that are specific for single genotypes PCV2a to PCV2f and two qPCRs targeting two genotypes simultaneously (PCV2g/PCV2d and PCV2h/PCV2c). To improve specific binding of oligonucleotide primers and TaqMan probes, we used locked nucleic acid technology. We evaluated amplification efficiency, diagnostic sensitivity and tested assay specificity for the respective genotypes. Results All eight PCV2 genotype specific qPCRs demonstrated appropriate amplification efficiencies between 91 and 97%. Testing samples from an epidemiological field study demonstrated a diagnostic sensitivity of the respective genotype specific qPCR that was comparable to a highly sensitive pan-PCV2 qPCR system. Genotype specificity of most qPCRs was excellent. Limited unspecific signals were obtained when a high viral load of PCV2b was tested with qPCRs targeting PCV2d or PCV2g. The same was true for the PCV2a specific qPCR when high copy numbers of PCV2d were tested. The qPCR targeting PCV2h/PCV2c showed some minor cross-reaction with PCV2d, PCV2f and PCV2g. Conclusion Genotyping of PCV2 is important for routine diagnosis as well as for epidemiological studies. The introduced genotyping qPCR system is ideal for mass testing and should be a valuable complement to PCV2 sequencing, especially in the case of simultaneous infections with multiple PCV2 genotypes, subclinically infected animals or research studies that require large sample numbers.


2021 ◽  
Vol 9 (8) ◽  
pp. 1610
Author(s):  
Christian Klotz ◽  
Elke Radam ◽  
Sebastian Rausch ◽  
Petra Gosten-Heinrich ◽  
Toni Aebischer

Giardiasis in humans is a gastrointestinal disease transmitted by the potentially zoonotic Giardia duodenalis genotypes (assemblages) A and B. Small wild rodents such as mice and voles are discussed as potential reservoirs for G. duodenalis but are predominantly populated by the two rodent species Giardia microti and Giardia muris. Currently, the detection of zoonotic and non-zoonotic Giardia species and genotypes in these animals relies on cumbersome PCR and sequencing approaches of genetic marker genes. This hampers the risk assessment of potential zoonotic Giardia transmissions by these animals. Here, we provide a workflow based on newly developed real-time PCR schemes targeting the small ribosomal RNA multi-copy gene locus to distinguish G. muris, G. microti and G. duodenalis infections. For the identification of potentially zoonotic G. duodenalis assemblage types A and B, an established protocol targeting the single-copy gene 4E1-HP was used. The assays were specific for the distinct Giardia species or genotypes and revealed an analytical sensitivity of approximately one or below genome equivalent for the multi-copy gene and of about 10 genome equivalents for the single-copy gene. Retesting a biobank of small rodent samples confirmed the specificity. It further identified the underlying Giardia species in four out of 11 samples that could not be typed before by PCR and sequencing. The newly developed workflow has the potential to facilitate the detection of potentially zoonotic and non-zoonotic Giardia species in wild rodents.


Sign in / Sign up

Export Citation Format

Share Document