scholarly journals Repression of TNF-α-induced IL-8 expression by the glucocorticoid receptor-β involves inhibition of histone H4 acetylation

2009 ◽  
Vol 41 (5) ◽  
pp. 297 ◽  
Author(s):  
Sang-Hoon Kim ◽  
Doh-Hyung Kim ◽  
Paul Lavender ◽  
Ji-Hee Seo ◽  
Yun-Seop Kim ◽  
...  
2012 ◽  
Vol 16 (8) ◽  
pp. 1766-1775 ◽  
Author(s):  
Yoshiko Yamamura ◽  
Katsumi Motegi ◽  
Kouichi Kani ◽  
Hideyuki Takano ◽  
Yukihiro Momota ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii19-ii19
Author(s):  
Anca Mihalas ◽  
Heather Feldman ◽  
Anoop Patel ◽  
Patrick Paddison

Abstract Current standard of care therapy for glioblastoma (GBM) includes cytoreduction followed by ablative therapies that target rapidly dividing cell types. However, the presence of quiescent-like/G0 states, therefore, represents a natural reservoir of tumor cells that are resistant to current treatments. Quiescence or G0 phase is a reversible state of “stasis” cells enter in response to developmental or environmental cues. To gain insight into how glioblastoma cells might regulate G0-like states, we performed a genome-wide CRISPR-Cas9 screen in patient-derived GBM stem-like cells (GSCs) harboring a G0-reporter to identify genes that when inhibited trap GSCs in G0-like states. Among the top screen hits were members of the Tip60/KAT5 histone acetyltransferase complex, which targets both histones (e.g., H4) and non-histone proteins for acetylation. NuA4 functions as a transcriptional activator, whose activities are coordinated with MYC in certain contexts, and also participates in DNA double-strand break repair by facilitating chromatin opening. However, currently little is known about the roles for NuA4 complex in GBM biology. Through modeling KAT5 function in GSC in vitro cultures and in vivo tumors, we find that KAT5 inhibition causes cells to arrest in a G0-like state with high p27 levels, G1-phase DNA content, low protein synthesis rates, low rRNA rates, lower metabolic rate, suppression of cell cycle gene expression, and low histone H4 acetylation. Interestingly, partial inhibition of KAT5 activity slows highly aggressive tumor growth, while increasing p27hi H4-aclow populations. Remarkably, we that low grade gliomas have significantly higher H4-aclow subpopulations and generally lower H4-ac levels than aggressive grade IV tumors. Taken together, our results suggest that NuA4/KAT5 activity may play a key role in quiescence ingress/egress in glioma and that targeting its activity in high grade tumors may effectively “down grade” them, thus, increase patient survival.


2008 ◽  
Vol 170 (5) ◽  
pp. 618-627 ◽  
Author(s):  
Suisui Song ◽  
Kelly E. McCann ◽  
J. Martin Brown

2013 ◽  
Vol 33 (16) ◽  
pp. 3286-3298 ◽  
Author(s):  
Zhongqi Ge ◽  
Devi Nair ◽  
Xiaoyan Guan ◽  
Neha Rastogi ◽  
Michael A. Freitas ◽  
...  

The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.


1999 ◽  
Vol 19 (1) ◽  
pp. 855-863 ◽  
Author(s):  
Keiko Ikeda ◽  
David J. Steger ◽  
Anton Eberharter ◽  
Jerry L. Workman

ABSTRACT Recent progress in identifying the catalytic subunits of histone acetyltransferase (HAT) complexes has implicated histone acetylation in the regulation of transcription. Here, we have analyzed the function of two native yeast HAT complexes, SAGA (Spt-Ada-Gcn5 Acetyltransferase) and NuA4 (nucleosome acetyltransferase of H4), in activating transcription from preassembled nucleosomal array templates in vitro. Each complex was tested for the ability to enhance transcription driven by GAL4 derivatives containing either acidic, glutamine-rich, or proline-rich activation domains. On nucleosomal array templates, the SAGA complex selectively stimulates transcription driven by the VP16 acidic activation domain in an acetyl coenzyme A-dependent manner. In contrast, the NuA4 complex facilitates transcription mediated by any of the activation domains tested if allowed to preacetylate the nucleosomal template, indicating a general stimulatory effect of histone H4 acetylation. However, when the extent of acetylation by NuA4 is limited, the complex also preferentially stimulates VP16-driven transcription. SAGA and NuA4 interact directly with the VP16 activation domain but not with a glutamine-rich or proline-rich activation domain. These data suggest that recruitment of the SAGA and NuA4 HAT complexes by the VP16 activation domain contributes to HAT-dependent activation. In addition, extensive H4/H2B acetylation by NuA4 leads to a general activation of transcription, which is independent of activator-NuA4 interactions.


2007 ◽  
Vol 66 (3) ◽  
pp. 713-726 ◽  
Author(s):  
Ludmila V. Roze ◽  
Anna E. Arthur ◽  
Sung-Yong Hong ◽  
Anindya Chanda ◽  
John E. Linz

Sign in / Sign up

Export Citation Format

Share Document