Synthesis and Characterization of Mg and Ti Ions Co-Doped Lithium Iron Phosphate and Its Lithium-Ion Batteries

2012 ◽  
Vol 28 (09) ◽  
pp. 2084-2090 ◽  
Author(s):  
WANG Zhen-Po ◽  
◽  
LIU Wen ◽  
WANG Yue ◽  
ZHAO Chun-Song ◽  
...  
2018 ◽  
Vol 512 ◽  
pp. 398-403 ◽  
Author(s):  
Yan Wang ◽  
Zhen-yu He ◽  
Yao-xuan Wang ◽  
Cong Fan ◽  
Chen-ren-lang Liu ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (103) ◽  
pp. 101477-101484 ◽  
Author(s):  
Ali Reza Madram ◽  
Reza Daneshtalab ◽  
Mohammad Reza Sovizi

Lithium iron phosphate (LiFePO4) composites co-doped with Na+ and K+, Li1−x−yNaxKyFePO4/C (0 ≤ x ≤ 0.03, 0 ≤ y ≤ 0.03, x + y = 0.03), are synthesized through a sol–gel method and tested as a promising cathode material for lithium-ion batteries (LIBs).


2020 ◽  
Vol 32 (12) ◽  
pp. 2982-2999
Author(s):  
Zolani Myalo ◽  
Chinwe Oluchi Ikpo ◽  
Assumpta Chinwe Nwanya ◽  
Miranda Mengwi Ndipingwi ◽  
Samantha Fiona Duoman ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 149
Author(s):  
Alexandra Holzer ◽  
Stefan Windisch-Kern ◽  
Christoph Ponak ◽  
Harald Raupenstrauch

The bottleneck of recycling chains for spent lithium-ion batteries (LIBs) is the recovery of valuable metals from the black matter that remains after dismantling and deactivation in pre‑treatment processes, which has to be treated in a subsequent step with pyrometallurgical and/or hydrometallurgical methods. In the course of this paper, investigations in a heating microscope were conducted to determine the high-temperature behavior of the cathode materials lithium cobalt oxide (LCO—chem., LiCoO2) and lithium iron phosphate (LFP—chem., LiFePO4) from LIB with carbon addition. For the purpose of continuous process development of a novel pyrometallurgical recycling process and adaptation of this to the requirements of the LIB material, two different reactor designs were examined. When treating LCO in an Al2O3 crucible, lithium could be removed at a rate of 76% via the gas stream, which is directly and purely available for further processing. In contrast, a removal rate of lithium of up to 97% was achieved in an MgO crucible. In addition, the basic capability of the concept for the treatment of LFP was investigated whereby a phosphorus removal rate of 64% with a simultaneous lithium removal rate of 68% was observed.


2010 ◽  
Vol 20 (38) ◽  
pp. 8224 ◽  
Author(s):  
Lingzhi Zhang ◽  
Leslie Lyons ◽  
Jocelyn Newhouse ◽  
Zhengcheng Zhang ◽  
Megan Straughan ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (106) ◽  
pp. 104597-104607 ◽  
Author(s):  
Monika Wilamowska-Zawlocka ◽  
Paweł Puczkarski ◽  
Zofia Grabowska ◽  
Jan Kaspar ◽  
Magdalena Graczyk-Zajac ◽  
...  

We report here on the synthesis and characterization of silicon oxycarbide (SiOC) in view of its application as a potential anode material for Li-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document