scholarly journals Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor cells and mesenchymal stem cells

Author(s):  
M. Raida ◽  
A. Heymann ◽  
C. Günther ◽  
D. Niederwieser
2020 ◽  
Vol 21 (17) ◽  
pp. 6418 ◽  
Author(s):  
Maria Godoy-Gallardo ◽  
Núria Portolés-Gil ◽  
Ana M. López-Periago ◽  
Concepción Domingo ◽  
Leticia Hosta-Rigau

We have previously reported the fabrication of a polycaprolactone and hydroxyapatite composite scaffold incorporating growth factors to be used for bone regeneration. Two growth factors were incorporated employing a multilayered coating based on polydopamine (PDA). In particular, Bone morphogenetic protein-2 (BMP-2) was bound onto the inner PDA layer while vascular endothelial growth factor (VEGF) was immobilized onto the outer one. Herein, the in vitro release of both growth factors is evaluated. A fastest VEGF delivery followed by a slow and more sustained release of BMP-2 was demonstrated, thus fitting the needs for bone tissue engineering applications. Due to the relevance of the crosstalk between bone-promoting and vessel-forming cells during bone healing, the functionalized scaffolds are further assessed on a co-culture setup of human mesenchymal stem cells and human endothelial progenitor cells. Osteogenic and angiogenic gene expression analysis indicates a synergistic effect between the growth factor-loaded scaffolds and the co-culture conditions. Taken together, these results indicate that the developed scaffolds hold great potential as an efficient platform for bone-tissue applications.


2020 ◽  
Vol 21 (7) ◽  
pp. 2466 ◽  
Author(s):  
Yi-Chou Hou ◽  
Chien-Lin Lu ◽  
Cai-Mei Zheng ◽  
Wen-Chih Liu ◽  
Tzung-Hai Yen ◽  
...  

Vascular calcification, which involves the deposition of calcifying particles within the arterial wall, is mediated by atherosclerosis, vascular smooth muscle cell osteoblastic changes, adventitial mesenchymal stem cell osteoblastic differentiation, and insufficiency of the calcification inhibitors. Recent observations implied a role for mesenchymal stem cells and endothelial progenitor cells in vascular calcification. Mesenchymal stem cells reside in the bone marrow and the adventitial layer of arteries. Endothelial progenitor cells that originate from the bone marrow are an important mechanism for repairing injured endothelial cells. Mesenchymal stem cells may differentiate osteogenically by inflammation or by specific stimuli, which can activate calcification. However, the bioactive substances secreted from mesenchymal stem cells have been shown to mitigate vascular calcification by suppressing inflammation, bone morphogenetic protein 2, and the Wingless-INT signal. Vitamin D deficiency may contribute to vascular calcification. Vitamin D supplement has been used to modulate the osteoblastic differentiation of mesenchymal stem cells and to lessen vascular injury by stimulating adhesion and migration of endothelial progenitor cells. This narrative review clarifies the role of mesenchymal stem cells and the possible role of vitamin D in the mechanisms of vascular calcification.


2017 ◽  
Vol 204 (5-6) ◽  
pp. 218-227 ◽  
Author(s):  
Dominik Steiner ◽  
Katrin Köhn ◽  
Justus P. Beier ◽  
Michael Stürzl ◽  
Raymund E. Horch ◽  
...  

Integrating bioartificial tissues into the host vasculature is a prerequisite for tissue engineering applications. Endothelial progenitor cells (EPCs) display a high angiogenic potential and a low donor-site morbidity, making them ideal for tissue engineering applications. In our study we used a murine EPC cell line (T17b) and rat mesenchymal stem cells (MSCs) for cocultivation experiments. MSCs were cocultured with increasing T17b EPC amounts. Furthermore, MSCs in monoculture were treated with conditioned medium (CM) from T17b EPCs and T17b EPCs were treated with CM from MSCs. Proliferation and apoptosis were quantified with a bromodeoxyuridine ELISA and a DNA fragmentation ELISA, respectively. Osteogenic differentiation was detected with an alkaline phosphatase assay and bone morphogenetic protein-2 ELISA. The production of proangiogenic molecules was measured with a matrix metalloproteinase-3 and vascular endothelial growth factor ELISA as well as nitric oxide assay. We could show that T17b EPCs stimulated MSC proliferation but not vice versa. On the other hand, MSCs promoted the cell survival of EPCs. The growth-inducing and antiapoptotic effects were dependent on heterotypic cell contacts and paracrine mediators. Moreover, proangiogenic growth factors were found in the coculture. Collectively, our results indicate that the coapplication of MSCs and T17b EPCs provides new perspectives for tissue engineering applications.


2010 ◽  
Vol 222 (2) ◽  
pp. 474-480 ◽  
Author(s):  
Giovanni Di Bernardo ◽  
Umberto Galderisi ◽  
Carmela Fiorito ◽  
Tiziana Squillaro ◽  
Letizia Cito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document