Mammary gland tumor in transgenic mice expressing targeted beta-casein/HPV16E6 fusion gene.

Author(s):  
D Y Hwang ◽  
K R Chae ◽  
D H Shin ◽  
I S Jang ◽  
J H Hwang ◽  
...  
1989 ◽  
Vol 9 (2) ◽  
pp. 560-565
Author(s):  
K F Lee ◽  
S H Atiee ◽  
J M Rosen

Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of transgenic mice carrying two fusion genes containing either 2.3 or 0.5 kb, respectively, of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A were identified, most of which transmitted the transgenes to their offspring in a Mendelian pattern. CAT activity was detected predominantly in the lactating mammary gland of female transgenic mice but not in the male mammary fat pad. A several-hundred-fold variation in the level of cat expression was observed in the mammary gland of different lines of mice, presumably due to the site of integration of the transgenes. CAT activity was increased in the mammary gland during development from virgin to midpregnancy and lactation. Unexpectedly, the casein-cat transgenes were also expressed in the thymus of different lines of both male and female mice, in some cases at levels equivalent to those observed in the mammary gland, and in contrast to the mammary gland, CAT activity was decreased during pregnancy and lactation in the thymus. Thus, 0.5 kb of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A are sufficient to target bacterial cat gene expression to the mammary gland of lactating mice.


1989 ◽  
Vol 9 (2) ◽  
pp. 560-565 ◽  
Author(s):  
K F Lee ◽  
S H Atiee ◽  
J M Rosen

Previous studies in our laboratory have demonstrated the mammary-specific expression of the entire rat beta-casein gene with 3.5 kilobases (kb) of 5' and 3.0 kb of 3' DNA in transgenic mice (Lee et al., Nucleic Acids Res. 16:1027-1041, 1988). In an attempt to localize sequences that dictate this specificity, lines of transgenic mice carrying two different rat beta-casein promoter-bacterial chloramphenicol acetyltransferase (cat) fusion genes have been established. Twenty and eight lines of transgenic mice carrying two fusion genes containing either 2.3 or 0.5 kb, respectively, of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A were identified, most of which transmitted the transgenes to their offspring in a Mendelian pattern. CAT activity was detected predominantly in the lactating mammary gland of female transgenic mice but not in the male mammary fat pad. A several-hundred-fold variation in the level of cat expression was observed in the mammary gland of different lines of mice, presumably due to the site of integration of the transgenes. CAT activity was increased in the mammary gland during development from virgin to midpregnancy and lactation. Unexpectedly, the casein-cat transgenes were also expressed in the thymus of different lines of both male and female mice, in some cases at levels equivalent to those observed in the mammary gland, and in contrast to the mammary gland, CAT activity was decreased during pregnancy and lactation in the thymus. Thus, 0.5 kb of 5'-flanking DNA of the rat beta-casein gene along with noncoding exon I and 0.5 kb of intron A are sufficient to target bacterial cat gene expression to the mammary gland of lactating mice.


1995 ◽  
Vol 6 (3) ◽  
pp. 159-163 ◽  
Author(s):  
Carolyn J. Sympson ◽  
Mina J. Bissell ◽  
Zena Werb

2021 ◽  
Vol 8 ◽  
Author(s):  
Enshuang Xu ◽  
Mengxin Hu ◽  
Reidong Ge ◽  
Danning Tong ◽  
Yuying Fan ◽  
...  

Tamoxifen is the drug of choice for endocrine therapy of breast cancer. Its clinical use is limited by the development of drug resistance. There is increasing evidence that long non-coding RNAs (lncRNAs) are associated with tumor drug resistance. Therefore, we established two TAM-resistant cell lines, CHMpTAM and CHMmTAM. The different expression levels of lncRNA and miRNA in CHMmTAM and CHMm were screened by RNA sequencing, and the lncRNA-miRNA interactions were analyzed. LncRNA ENSCAFG42060 (lnc-42060) was found to be significantly upregulated in drug-resistant cells and tumor tissues. Further functional validation revealed that the knockdown of lnc-42060 inhibited proliferation, migration, clone formation, restoration of TAM sensitivity, and reduction of stem cell formation in drug-resistant cells, whereas overexpression of lnc-4206 showed opposite results. Bioinformatics and dual-luciferase reporter gene assays confirmed that lnc-42060 could act as a sponge for miR-204-5p, further regulating SOX4 expression activity and thus influencing tumor cell progression. In conclusion, we screened lncRNAs and miRNAs associated with TAM resistance in canine mammary gland tumor cells for the first time. lnc-42060 served as a novel marker that may be used as an important biomarker for future diagnosis and treatment.


2009 ◽  
Vol 71 (9) ◽  
pp. 1225-1228 ◽  
Author(s):  
Takayuki NAKAGAWA ◽  
Yoshifumi ENDO ◽  
Manabu WATANABE ◽  
Manabu MOCHIZUKI ◽  
Ryohei NISHIMURA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document