scholarly journals Intratumor injection of small interfering RNA-targeting human papillomavirus 18 E6 and E7 successfully inhibits the growth of cervical cancer

Author(s):  
Takuma Fujii ◽  
Miyuki Saito ◽  
Eri Iwasaki ◽  
Takahiro Ochiya ◽  
Yoshifumi Takei ◽  
...  
2003 ◽  
Vol 77 (10) ◽  
pp. 6066-6069 ◽  
Author(s):  
Allison H. S. Hall ◽  
Kenneth A. Alexander

ABSTRACT The human papillomavirus oncoproteins E6 and E7 promote cell proliferation and contribute to carcinogenesis by interfering with the activities of cellular tumor suppressors. We used a small interfering RNA molecule targeting the E7 region of the bicistronic E6 and E7 mRNA to induce RNA interference, thereby reducing expression of E6 and E7 in HeLa cells. RNA interference of E6 and E7 also inhibited cellular DNA synthesis and induced morphological and biochemical changes characteristic of cellular senescence. These results demonstrate that reducing E6 and E7 expression is sufficient to cause HeLa cells to become senescent.


2007 ◽  
Vol 122 (3) ◽  
pp. 658-663 ◽  
Author(s):  
Kentaro Iwaki ◽  
Kohei Shibata ◽  
Masayuki Ohta ◽  
Yuichi Endo ◽  
Hiroki Uchida ◽  
...  

2010 ◽  
Vol 84 (16) ◽  
pp. 8219-8230 ◽  
Author(s):  
Monika Somberg ◽  
Stefan Schwartz

ABSTRACT Our results presented here demonstrate that the most abundant human papillomavirus type 16 (HPV-16) mRNAs expressing the viral oncogenes E6 and E7 are regulated by cellular ASF/SF2, itself defined as a proto-oncogene and overexpressed in cervical cancer cells. We show that the most frequently used 3′-splice site on the HPV-16 genome, site SA3358, which is used to produce primarily E4, E6, and E7 mRNAs, is regulated by ASF/SF2. Splice site SA3358 is immediately followed by 15 potential binding sites for the splicing factor ASF/SF2. Recombinant ASF/SF2 binds to the cluster of ASF/SF2 sites. Mutational inactivation of all 15 sites abolished splicing to SA3358 and redirected splicing to the downstream-located, late 3′-splice site SA5639. Overexpression of a mutant ASF/SF2 protein that lacks the RS domain, also totally inhibited the usage of SA3358 and redirected splicing to the late 3′-splice site SA5639. The 15 ASF/SF2 binding sites could be replaced by an ASF/SF2-dependent, HIV-1-derived splicing enhancer named GAR. This enhancer was also inhibited by the mutant ASF/SF2 protein that lacks the RS domain. Finally, silencer RNA (siRNA)-mediated knockdown of ASF/SF2 caused a reduction in spliced HPV-16 mRNA levels. Taken together, our results demonstrate that the major HPV-16 3′-splice site SA3358 is dependent on ASF/SF2. SA3358 is used by the most abundantly expressed HPV-16 mRNAs, including those encoding E6 and E7. High levels of ASF/SF2 may therefore be a requirement for progression to cervical cancer. This is supported by our earlier findings that ASF/SF2 is overexpressed in high-grade cervical lesions and cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document