scholarly journals Molecular docking to explore the possible binding mode of potential inhibitors of thioredoxin glutathione reductase

2015 ◽  
Vol 12 (4) ◽  
pp. 5787-5795 ◽  
Author(s):  
JINGWEI HUANG ◽  
WEIJUAN HUA ◽  
JIAHUANG LI ◽  
ZICHUN HUA
2019 ◽  
Vol 57 (9) ◽  
pp. 838-846
Author(s):  
Xing-shuo Yin ◽  
Xue-qin Zhang ◽  
Jin-tuo Yin ◽  
De-zhi Kong ◽  
De-qiang Li

Abstract There is an increasing interest in screening and developing natural tyrosinase inhibitors widely applied in medicinal and cosmetic products, as well as in the food industry. In this study, an approach by ultrafiltration LC-MS and molecular docking was used to screen and identify tyrosinase inhibitors from Semen Oroxyli extract. The samples were first incubated with the tyrosinase to select the optimal binding conditions including tyrosinase concentration, incubation time and the molecular weight of ultrafiltration membrane. By comparison of the chromatographic profiles of the extracts after ultrafiltration with activated and inactivated tyrosinase, the potential inhibitors were obtained and then identified by LC-MS. The relative binding affinities of the potential inhibitors were also calculated based on the decrease of peak areas of those. As a result, seven compounds were fished out as tyrosinase inhibitors by this assay. Among them, oroxin A and baicalein showed higher tyrosinase inhibitory than resveratrol as positive drug, and their binding mode with enzyme was further verified via the molecular docking analysis. The test results showed that the proposed method was a simple, rapid, effective, and reliable method for the discovery of natural bioactive compounds, and it can be extended to screen other bioactive compounds from traditional Chinese medicines.


2020 ◽  
Author(s):  
Shanmugam Anandakumar ◽  
Damodharan Kannan ◽  
Eugene Wilson ◽  
Kasthuri Bai Narayanan ◽  
Ganesan Suresh ◽  
...  

The novel coronavirus is better known as COVID–19 caused by Severe Acute Respiratory Syndrome Corona–Virus 2 (SARS–CoV–2) which initially outburst at Wuhan in China on December 2019 and spread very rapidly around the globe. Scientists from the global regions endeavours to still probe for detecting potential treatment and discover effective therapeutic drug candidates for this unabated pandemic. In our article, we reported the molecular docking, bioactivity score, ADME and toxicity prediction of the phytoconstituents of <i>Solanum trilobatum</i> Linn. such as Solanidine, Solasodine and <i>a</i>–Solanine as potential inhibitors against the main protease (M<sup>pro</sup>) of SARS–CoV–2 tropism. The molecular docking of Solanidine, Solasodine and a–Solanine has revealed that it bounded deep into the active cavity site on the M<sup>pro</sup>. Further, the pharmacodynamics and bioactivity profile has confirmed that the molecules obeyed the Lipinski’s rule and will be used as notably treasured lead drug candidates to pursue further biochemical and cell–based assays to explore its potential against COVID–19 pandemic. Thus, envisioning thought–provoking research certainly provide new leads for the global researchers.


2019 ◽  
Vol 14 (9) ◽  
pp. 1934578X1986101
Author(s):  
Syazreen N. Sulaiman ◽  
Maywan Hariono ◽  
Haslinda Mohd Salleh ◽  
Soon-Lim Chong ◽  
Liew Sook Yee ◽  
...  

A phytochemical study on the bark of Endiandra kingiana Gamble (Lauraceae) led to the isolation of a new benzofuranone, 4-hydroxy-6-(9,13,17-trimethyldodeca-8,12,16-trienyl)-2(3 H)-benzofuranone (1), together with 6 known compounds. Their structures were established on the basis of detailed spectroscopic analysis, including one- and two-dimensional nuclear magnetic resonance (NMR) and electrospray Ionisation mass spectrometry techniques. Compounds 1-3 showed moderate inhibition against dengue virus type 2 NS2B/NS3 protease with percentage inhibitions of 61.23 ± 6.96, 69.92 ± 3.34, and 62.02 ± 6.19, respectively. Molecular docking was performed to predict the binding mode of all protease inhibitor models and the results revealed that most of the essential amino acid residues such as Asp129, Ser135, Tyr161, Asn152, and His51 significantly interact with the ligands.


2020 ◽  
Author(s):  
Shanmugam Anandakumar ◽  
Damodharan Kannan ◽  
Eugene Wilson ◽  
Kasthuri Bai Narayanan ◽  
Ganesan Suresh ◽  
...  

The novel coronavirus is better known as COVID–19 caused by Severe Acute Respiratory Syndrome Corona–Virus 2 (SARS–CoV–2) which initially outburst at Wuhan in China on December 2019 and spread very rapidly around the globe. Scientists from the global regions endeavours to still probe for detecting potential treatment and discover effective therapeutic drug candidates for this unabated pandemic. In our article, we reported the molecular docking, bioactivity score, ADME and toxicity prediction of the phytoconstituents of <i>Solanum trilobatum</i> Linn. such as Solanidine, Solasodine and <i>a</i>–Solanine as potential inhibitors against the main protease (M<sup>pro</sup>) of SARS–CoV–2 tropism. The molecular docking of Solanidine, Solasodine and a–Solanine has revealed that it bounded deep into the active cavity site on the M<sup>pro</sup>. Further, the pharmacodynamics and bioactivity profile has confirmed that the molecules obeyed the Lipinski’s rule and will be used as notably treasured lead drug candidates to pursue further biochemical and cell–based assays to explore its potential against COVID–19 pandemic. Thus, envisioning thought–provoking research certainly provide new leads for the global researchers.


2020 ◽  
Author(s):  
Shanmugam Anandakumar ◽  
Damodharan Kannan ◽  
Eugene Wilson ◽  
Kasthuri Bai Narayanan ◽  
Ganesan Suresh ◽  
...  

The novel coronavirus is better known as COVID–19 caused by Severe Acute Respiratory Syndrome Corona–Virus 2 (SARS–CoV–2) which initially outburst at Wuhan in China on December 2019 and spread very rapidly around the globe. Scientists from the global regions endeavours to still probe for detecting potential treatment and discover effective therapeutic drug candidates for this unabated pandemic. In our article, we reported the molecular docking, bioactivity score, ADME and toxicity prediction of the phytoconstituents of <i>Solanum trilobatum</i> Linn. such as Solanidine, Solasodine and <i>a</i>–Solanine as potential inhibitors against the main protease (M<sup>pro</sup>) of SARS–CoV–2 tropism. The molecular docking of Solanidine, Solasodine and a–Solanine has revealed that it bounded deep into the active cavity site on the M<sup>pro</sup>. Further, the pharmacodynamics and bioactivity profile has confirmed that the molecules obeyed the Lipinski’s rule and will be used as notably treasured lead drug candidates to pursue further biochemical and cell–based assays to explore its potential against COVID–19 pandemic. Thus, envisioning thought–provoking research certainly provide new leads for the global researchers.


2019 ◽  
Vol 16 (10) ◽  
pp. 837-845
Author(s):  
Sandhya Jonnala ◽  
Bhaskar Nameta ◽  
Murthy Chavali ◽  
Rajashaker Bantu ◽  
Pallavi Choudante ◽  
...  

A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.


2021 ◽  
Vol 1199 ◽  
pp. 113200
Author(s):  
Lorena Meneses ◽  
Sebastian Cuesta Hoyos ◽  
Guillermo Salgado Morán ◽  
Patricio Muñoz C. ◽  
Lorena Gerli Candia ◽  
...  

Heliyon ◽  
2021 ◽  
pp. e06603
Author(s):  
Ayoub Khaldan ◽  
Soukaina Bouamrane ◽  
Fatima En-Nahli ◽  
Reda El-mernissi ◽  
Khalil El khatabi ◽  
...  

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
P. M. Aja ◽  
P. C. Agu ◽  
E. M. Ezeh ◽  
J. N. Awoke ◽  
H. A. Ogwoni ◽  
...  

Abstract Background Cancer chemotherapy is difficult because current medications for the treatment of cancer have been linked to a slew of side effects; as a result, researchers are tasked with developing greener cancer chemotherapies. Moringa oleifera has been reported with several bioactive compounds which confirm its application for various ailments by traditional practitioners. In this study, we aim to prospect the therapeutic potentials of M. oleifera phytocompounds against cancer proliferation as a step towards drug discovery using a computational approach. Target proteins: dihydrofolate reductase (DHFR) and B-Cell Lymphoid-2 (BCL-2), were retrieved from the RCSB PDB web server. Sixteen and five phytocompounds previously reported in M. oleifera leaves (ML) and seeds (MS), respectively, by gas chromatography–mass spectrometry were synthesized and used in the molecular docking study. For accurate prediction of binding sites of the target proteins; standard inhibitors, Methotrexate (MTX) for DHFR, and Venetoclax (VTC) for BCL-2, were docked together with the test compounds. We further predicted the ADMET profile of the potential inhibitors for an insight into their chance of success as candidates in drug discovery. Results Results for the binding affinities, docking poses, and the interactions showed that ML2, ML4-6, ML8-15, and MS1-5 are potential inhibitors of DHFR and BCL-2, respectively. In the ADMET profile, ML2 and ML4 showed the best drug-likeness by non-violation of Lipski Rule of Five. ML4-6, ML8, ML11, ML14-15, and MS1, MS3-5 exhibit high GI absorption; ML2, ML4-6, ML8, MS1, and MS5 are blood–brain barrier permeants. ML2, ML4, ML9, ML13, and MS2 do not interfere with any of the CYP450 isoforms. The toxicity profile showed that all the potential inhibitors are non-carcinogenic and non-hERG I (human ether-a-go-go related gene I) inhibitors. ML4, ML11, and MS4 are hepatotoxic and ML7, ML10, and MS4 are hERG II inhibitors. A plethora of insights on the toxic endpoints and lethal concentration values showed that ML5, ML13, and MS2 are comparatively less lethal than other potential inhibitors. Conclusion This study has demonstrated that M. oleifera phytocompounds are potential inhibitors of the disease proteins involved in cancer proliferation, thus, an invaluable step toward the discovery of cancer chemotherapy with lesser limitations.


Sign in / Sign up

Export Citation Format

Share Document