dengue virus type 2
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 46)

H-INDEX

49
(FIVE YEARS 3)

Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1084
Author(s):  
Fernanda Cunha Jácome ◽  
Gabriela Cardoso Caldas ◽  
Arthur da Costa Rasinhas ◽  
Ana Luisa Teixeira de Almeida ◽  
Daniel Dias Coutinho de Souza ◽  
...  

Dengue virus type 2 (DENV-2) is, traditionally, the most studied serotype due to its association with explosive outbreaks and severe cases. In Brazil, almost 20 years after the first introduction in the 1990s, a new lineage (Lineage II) of the DENV-2 Asian/American genotype emerged and caused an epidemic with severe cases and hospitalizations. Severe dengue includes multiple organ failure, and renal involvement can be potentially related to increased mortality. In order to better understand the role of DENV infection in renal injury, here we aimed to investigate the outcomes of infection with two distinct lineages of DENV-2 Asian/American genotype in the kidney of a murine model. BALB/c mice were infected with Lineages I and II and tissues were submitted to histopathology, immunohistochemistry, histomorphometry and ultrastructural analysis. Blood urea nitrogen (BUN) was detected in blood sample accessed by cardiac puncture. A tendency in kidney weight increase was observed in mice infected with both lineages, but urea levels, on average, were increased only in mice infected with Lineage II. The DENV antigen was detected in the tissue of mice infected with Lineage II and morphological changes were similar to those observed in human dengue cases. Furthermore, the parameters such as organ weight, urea levels and morphometric analysis, showed significant differences between the two lineages in the infected BALB/c, which was demonstrated to be a suitable experimental model for dengue pathophysiology studies in kidneys.


Author(s):  
Lu Zhang ◽  
Lingzhai Zhao ◽  
Zhaoyong Zhang ◽  
Wenxin Hong ◽  
Jian Wang ◽  
...  

Author(s):  
Arif Nur Muhammad Ansori ◽  
Amaq Fadholly ◽  
Annise Proboningrat ◽  
Suhailah Hayaza ◽  
Raden Joko Kuncoroningrat Susilo ◽  
...  

Dengue is a major mosquito-borne disease that currently has no effective antiviral or vaccine available. Recently, Indonesia is one of the largest countries in the dengue-endemic region, with a total population of more than 250 million. In the present study, the antiviral activity of P. merkusii stem bark and cone were evaluated against dengue virus type-2 (DENV-2; NCBI accession number: KT012509) isolated from Surabaya, Indonesia. We revealed that P. merkusii stem bark and cone inhibited DENV-2 in Vero cells (originally from African green monkey kidney) with IC50= 140.63 μg/mL and 73.78 μg/mL, CC50= 89.65 μg/mL and 249.5 μg/mL, SI= 0.64 and 3.38, respectively. The findings presented here suggest that P. merkusii stem bark and cone exerts potent antiviral activity against DENV-2. Hence, P. merkusii stem bark and cone are potent to inhibit DENV-2 and should be considered for in vivo evaluation in the development of an effective antiviral compound against DENV-2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Surya Pavan Yenamandra ◽  
Carmen Koo ◽  
Suzanna Chiang ◽  
Han Shi Jeri Lim ◽  
Zhen Yuan Yeo ◽  
...  

AbstractDengue virus type 2 (DENV-2) contributes substantially to the dengue burden and dengue-related mortality in the tropics and sub-tropics. DENV-2 includes six genotypes, among which cosmopolitan genotype is the most widespread. The present study investigated the evolution, intra-genotype heterogeneity and dispersal of cosmopolitan genotype to understand unique genetic characteristics that have shaped the molecular epidemiology and distribution of cosmopolitan lineages. The spatial analysis demonstrated a wide geo-distribution of cosmopolitan genotype through an extensive inter-continental network, anchored in Southeast Asia and Indian sub-continent. Intra-genotype analyses using 3367 envelope gene sequences revealed six distinct lineages within the cosmopolitan genotype, namely the Indian sub-continent lineage and five other lineages. Indian sub-continent lineage was the most diverged among six lineages and has almost reached the nucleotide divergence threshold of 6% within E gene to qualify as a separate genotype. Genome wide amino acid signatures and selection pressure analyses further suggested differences in evolutionary characteristics between the Indian sub-continent lineage and other lineages. The present study narrates a comprehensive genomic analysis of cosmopolitan genotype and presents notable genetic characteristics that occurred during its evolution and global expansion. Whether those characteristics conferred a fitness advantage to cosmopolitan genotype in different geographies warrant further investigations.


2021 ◽  
Author(s):  
Surya Pavan Yenamandra ◽  
Carmen Koo ◽  
Suzanna Chiang ◽  
Lim Han Shi Jeri ◽  
Zhen Yuan Yeo ◽  
...  

Abstract Dengue virus type 2 (DENV-2) contributes substantially to the dengue burden and dengue-related mortality in the tropics and sub-tropics. DENV-2 includes six genotypes, among which cosmopolitan genotype is the most widespread. The present study investigated the evolution, intra-genotype heterogeneity and dispersal of cosmopolitan genotype to understand unique genetic characteristics that have shaped the molecular epidemiology and distribution of cosmopolitan lineages. The spatial analysis demonstrated a wide geo-distribution of cosmopolitan genotype through an extensive inter-continental network, anchored in Southeast Asia and Indian sub-continent. Intra-genotype analyses using 2,392 envelope gene sequences revealed six distinct lineages within the cosmopolitan genotype, namely the Indian sub-continent lineage and five other lineages. Indian sub-continent lineage was the most diverged among six lineages and has almost reached the nucleotide divergence threshold of 6% within E gene to qualify as a separate genotype. Genome wide amino acid signatures and selection pressure analyses further suggested differences in evolutionary characteristics between the Indian sub-continent lineage and other lineages. The present study narrates a comprehensive genomic analysis of cosmopolitan genotype and presents notable genetic characteristics that occurred during its evolution and global expansion. Whether those characteristics conferred a fitness advantage to cosmopolitan genotype in different geographies warrant further investigations.


2021 ◽  
Vol 17 ◽  
Author(s):  
Wan Amirah Basyarah Zainol Abidin ◽  
Mohammad Nuzaihan Md Nor ◽  
Mohd Khairuddin Md Arshad ◽  
Mohamad Faris Mohamad Fathil ◽  
Nor Azizah Parmin ◽  
...  

Background: Dengue is known as the most severe arboviral infection in the world that spread by Aedes aegypti. However, conventional and laboratory-based enzyme-linked immunosorbent assays (ELISA) are the present approached in detecting dengue virus (DENV), required skilled and well-trained personnel to operate. Therefore, the ultrasensitive and label-free technique of Silicon Nanowire (SiNW) biosensor was chosen for rapid detection of DENV. Methods: In this study, a SiNW field-effect transistor (FET) biosensor integrated with a back-gate of the low-doped p-type Silicon-on-insulator (SOI) wafer was fabricated through conventional photolithography and Inductively Coupled Plasma – Reactive Ion Etching (ICP-RIE) for Dengue Virus type-2 (DENV-2) DNA detection. The morphological characteristics of back-gated SiNW-FET were examined using a field-emission scanning electron microscope supported by the elemental analysis via energy-dispersive X-ray spectroscopy. Results and Discussion: A complementary (target) single-stranded s deoxyribonucleic acid (ssDNA) was recognized when the target DNA was hybridized with the probe DNA attached to SiNW surfaces. Based on the slope of the linear regression curve, the back-gated SiNW-FET biosensor demonstrated the sensitivity of 3.3 nAM-1 with a detection limit of 10 fM. Furthermore, the drain and back-gate voltages were also found to influence the SiNW conductance changed. Conclusion: Thus, the results obtained suggest that the back-gated SiNW-FET shows good stability in both biosensing applications and medical diagnosis throughout conventional photolithography method.


Author(s):  
Sonja Hall-Mendelin ◽  
Alyssa T Pyke ◽  
Ana L Ramirez ◽  
Kyran M Staunton ◽  
Peter Burtonclay ◽  
...  

Abstract The dengue viruses (DENVs) occur throughout tropical and subtropical regions of the world where they infect 100s of millions of people annually. In Australia, the dengue receptive zone is confined to the northern state of Queensland where the principal vector Aedes aegypti (L.) is present. In the current study, two populations of Ae. aegypti from north Queensland were exposed to two urban outbreak strains and one sylvatic strain of dengue virus type 2 (DENV-2). The titer of virus required to infect 50% of mosquitoes was between 105 and 106 50% tissue culture infectious dose (TCID)50/ml and was influenced by the combination of the origin of Ae. aegypti population and virus strain. When exposed to infectious bloodmeal titers > 106 TCID50/ml, infection and dissemination rates were all > 50% and were significantly affected by the origin of the mosquito population but not by the strain of DENV-2. Replication of DENV-2 was also significantly affected by the mosquito population and the titer of the infectious bloodmeal that mosquitoes were exposed to. The results of this study are discussed in the context of DENV transmission dynamics in northern Australia and the relative fitness of the sylvatic virus strain in urban Ae. aegypti populations.


2021 ◽  
Author(s):  
Madhusudhana Reddy Gangireddy ◽  
Vishnu Nayak Badavath ◽  
Caroline Velez ◽  
Naphat Loeanurit ◽  
Abhishek Thakur ◽  
...  

Dengue virus poses a serious worldwide health threat with up to 400 million infections occurring annually in over 100 countries. Currently, there are no specific therapeutics available, and the only...


Sign in / Sign up

Export Citation Format

Share Document