scholarly journals Astragalus polysaccharides affect insulin resistance by regulating the hepatic SIRT1-PGC-1α/PPARα-FGF21 signaling pathway in male Sprague Dawley rats undergoing catch-up growth

2015 ◽  
Vol 12 (5) ◽  
pp. 6451-6460 ◽  
Author(s):  
CHENGYING GU ◽  
YIPENG ZENG ◽  
ZHAOSHENG TANG ◽  
CHAOXUN WANG ◽  
YANJU HE ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saira Tanweer ◽  
Tariq Mehmood ◽  
Saadia Zainab ◽  
Zulfiqar Ahmad ◽  
Muhammad Ammar Khan ◽  
...  

Purpose Innovative health-promoting approaches of the era have verified phytoceutics as one of the prime therapeutic tools to alleviate numerous health-related ailments. The purpose of this paper is to probe the nutraceutic potential of ginger flowers and leaves against hyperglycemia. Design/methodology/approach The aqueous extracts of ginger flowers and leaves were observed on Sprague Dawley rats for 8 weeks. Two parallel studies were carried out based on dietary regimes: control and hyperglycemic diets. At the end of the experimental modus, the overnight fed rats were killed to determine the concentration of glucose and insulin in serum. The insulin resistance and insulin secretions were also calculated by formulae by considering fasting glucose and fasting insulin concentrations. Furthermore, the feed and drink intakes, body weight gain and hematological analysis were also carried out. Findings In streptozotocin-induced hyperglycemic rats, the ginger flowers extract depicted 5.62% reduction; however, ginger leaves extract reduced the glucose concentration up to 7.11% (p = 0.001). Similarly, ginger flowers extract uplifted the insulin concentration up to 3.07%, while, by ginger leaves extract, the insulin value increased to 4.11% (p = 0.002). For the insulin resistance, the ginger flower showed 5.32% decrease; however, the insulin resistance was reduced to 6.48% by ginger leaves (p = 0.014). Moreover, the insulin secretion increased to 18.9% by flower extract and 21.8% by ginger leave extract (p = 0.001). The feed intake and body weight gain increased momentously by the addition of ginger flowers and leaves; however, the drink intake and hematological analysis remained non-significant by the addition of ginger parts. Originality/value Conclusively, it was revealed that leaves have more hypoglycemic potential as compared to flowers.


Hypertension ◽  
2005 ◽  
Vol 46 (4) ◽  
pp. 806-811 ◽  
Author(s):  
Gerard D’Angelo ◽  
Ahmed A. Elmarakby ◽  
David M. Pollock ◽  
David W. Stepp

2002 ◽  
Vol 282 (2) ◽  
pp. E412-E418 ◽  
Author(s):  
Frédéric Picard ◽  
André Boivin ◽  
Josée Lalonde ◽  
Yves Deshaies

This study aimed to assess whether adipose lipoprotein lipase (LPL) becomes resistant to insulin in a nutritional model of resistance of glucose metabolism to insulin. Sprague-Dawley rats were fed for 4 wk chow or a purified high-sucrose, high-fat (HSHF) diet that induced overt insulin resistance. Rats were fasted for 24 h and then refed chow for 1, 3, or 6 h. The postprandial rise in insulinemia was similar in both dietary cohorts, whereas glycemia was higher in HSHF-fed than in chow-fed animals, indicating glucose intolerance and insulin resistance. In chow-fed rats, adipose LPL activity increased two- to fourfold postprandially, but only minimally (30%) in HSHF-fed rats. Muscle LPL decreased postprandially in HSHF-fed rats, suggesting intact sensitivity to insulin, but it increased in chow-fed animals. Peak postprandial triglyceridemia was higher (+70%) in insulin-resistant than in control rats. The postprandial rate of appearance of triglycerides in the circulation was similar in control and insulin-resistant rats, indicating that hypertriglyceridemia of the latter was the result of impaired clearance. These results demonstrate that adipose LPL becomes resistant to insulin in diet-induced IR and further suggest that, under certain nutritional conditions, modifications in adipose LPL modulation associated with insulin resistance, along with low muscle LPL, heightens postprandial hypertriglyceridemia through attenuated triglyceride clearance.


2018 ◽  
Vol 52 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Ayodele Olufemi Morakinyo ◽  
Bolanle Olubusola Iranloye ◽  
Oluseyi Abimbola Ogunsola

AbstractObjectives. We aimed to evaluate the effects of a single (acute) and repeated (chronic) exposure to forced-swimming stressor on glucose tolerance, insulin sensitivity, lipid profile and glycogen content in male rats.Methods. Thirty adult male Sprague-Dawley rats (12 weeks old) were divided randomly into five groups: control group, single exposure (SE) to forced-swim stressor, repeated exposure to forced-swim stressor for 7 days (RE7), 14 days (RE14) and 28 days (RE28). Glucose tolerance test and Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) were undertaken on fasting rats to obtain glucose and insulin profiles. ELISA was performed to assess plasma insulin and corticosterone levels. Total cholesterol, triglyceride, high- and low-density lipoproteins, hepatic and skeletal glycogen content were also determined.Results. Repeated exposure to stressor induced glucose intolerance and insulin resistance in the experimental rats. Results showed that all RE groups exhibited a significantly higher area under the curve compared with others (p=0.0001); similarly, HOMA-IR increased (p=0.0001) in all RE groups compared with control. Prolonged exposure to stressor significantly increased the plasma insulin and corticosterone levels but decreased the glycogen content in the liver and skeletal muscle when compared with the control group. Additionally, chronic stressor significantly increased the total cholesterol and triglyceride levels, however, acute stressor produced significantly elevated high-density lipoproteins level.Conclusions. In conclusion, repeated exposure to forced-swimming stressor induced glucose intolerance and insulin resistance in rats by disrupting the insulin sensitivity as well as heightening the glycogenolysis in the liver and skeletal muscle. Acute stressor was unable to cause glucose intolerance and insulin resistance but it appears that may have a positive effect on the lipid metabolism.


2013 ◽  
Vol 98 (1) ◽  
pp. 28-36 ◽  
Author(s):  
Dino Premilovac ◽  
Eloise A. Bradley ◽  
Huei L.H. Ng ◽  
Stephen M. Richards ◽  
Stephen Rattigan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document