Honey bee colony collapse and changes in viral prevalence associated with Varroa destructor

2010 ◽  
Vol 49 (1) ◽  
pp. 93-94 ◽  
Author(s):  
Norman L. Carreck ◽  
Brenda V. Ball ◽  
Stephen J. Martin
PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e32151 ◽  
Author(s):  
Benjamin Dainat ◽  
Jay D. Evans ◽  
Yan Ping Chen ◽  
Laurent Gauthier ◽  
Peter Neumann

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kelly Kulhanek ◽  
Andrew Garavito ◽  
Dennis vanEngelsdorp

AbstractA leading cause of managed honey bee colony mortality in the US, Varroa destructor populations typically exceed damaging levels in the fall. One explanation for rapid population increases is migration of mite carrying bees between colonies. Here, the degree to which bees from high and low mite donor colonies move between apiaries, and the effect visitation has on Varroa populations was monitored. More bees from low mite colonies (n = 37) were detected in receiver apiaries than bees from high mite colonies (n = 10, p < 0.001). Receiver colony Varroa population growth was associated with visitation by non-natal bees (p = 0.03), but not high mite bees alone (p = 0.19). Finally, colonies lacking robbing screens experienced faster Varroa population growth than screened neighbors (p = 0.01). Results indicate visiting non-natal bees may vector mites to receiver colonies. These results do not support the current two leading theories regarding mite immigration – the “mite bomb” theory (bees from high mite colonies emigrating to collapsing colonies), or the “robbing” theory (natal robbing bees return home with mites from collapsing colonies). Potential host-parasite effects to bee behavior, as well as important management implications both for Varroa treatment regimens and breeding Varroa resistant bees are discussed.


2016 ◽  
Vol 85 (3) ◽  
pp. 255-260
Author(s):  
Ivana Papežíková ◽  
Miroslava Palíková ◽  
Stanislav Navrátil ◽  
Radka Heumannová ◽  
Michael Fronc

Oxalic acid is one of the organic acids used for controlling Varroa destructor, a mite parasitizing the honey bee (Apis mellifera). The aim of this work was to examine the effect of oxalic acid applied by sublimation on honey bee colony fitness, and to compare it with the effect of amitraz, a routinely used synthetic acaricide. Bee colonies of equal strength were randomly divided into two groups. In December 2014, one group was treated with amitraz in the form of aerosol, and the second group was treated with oxalic acid applied by sublimation. The colonies were monitored over winter. Dead bees found at the bottom of the hive were counted regularly and examined microscopically for infection with Nosema sp. (Microsporidia). At the end of March 2015, living foragers from each hive were sampled and individually examined for Nosema sp. infection. Colony strength was evaluated at the beginning of April. No adverse effect of oxalic acid on colony strength was observed despite the fact that the total number of dead bees was non-significantly higher in the oxalic acid-treated group. Examination of dead bees for Nosema infection did not reveal significant differences in spore numbers between the experimental groups. There was a substantial difference in living individuals, however, with a significantly higher amount of spores per bee found in the amitraz-treated colonies compared to the oxalic acid-treated colonies. Compared to amitraz, oxalic acid applied by sublimation showed no adverse effects on bee colony fitness or on successful overwintering.


Virology ◽  
2014 ◽  
Vol 454-455 ◽  
pp. 176-183 ◽  
Author(s):  
Nor Chejanovsky ◽  
Ron Ophir ◽  
Michal Sharabi Schwager ◽  
Yossi Slabezki ◽  
Smadar Grossman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document