scholarly journals Mapping Control of Erosion Rates: Comparing Model and Monitoring Data for Croplands in Northern Germany

One Ecosystem ◽  
2018 ◽  
Vol 3 ◽  
pp. e26382 ◽  
Author(s):  
Bastian Steinhoff-Knopp ◽  
Benjamin Burkhard

Control of erosion rates (CER) is a key ecosystem service for soil protection. It is mandatory for sustaining the capacity, especially of agroecosystems, to provide ecosystem services. By applying an established framework to assess soil regulating services, this study compares two approaches to assess CER provision for 466 ha of cropland in Lower Saxony (Central Northern Germany). In a "sealed modelling approach", the structural and the mitigated structural impact were modelled by applying the Universal Soil Loss Equation (USLE). The second approach uses spatially explicit long-term monitoring data on soil loss rates obtained in the investigation area as an alternative to the USLE-based modelled mitigated structural impact. Assuming that the monitoring data have a higher reliability than the modelled data, the comparison of both approaches demonstrated the uncertainties of the USLE-based assessment of CER. The calculated indicators based on a sound monitoring database on soil loss rates showed that, due to limitations of the USLE model, the structural impact in thalwegs has been underestimated. Incorporating models with the ability to estimate soil loss by rilling und gullying can help to overcome this uncertainty. The produced set of complementary large-scale CER maps enables an integrated analyses of CER. In the entire investigation area, the provision of CER regulating ecosystem services was generally high, indicating good management practices. Differences at the field scale and between the different regions can be explained by variations of the structural impact and the management practices.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0234288
Author(s):  
Paula Rendon ◽  
Bastian Steinhoff-Knopp ◽  
Philipp Saggau ◽  
Benjamin Burkhard

Ecosystems provide multiple services that are necessary to maintain human life. Agroecosystems are very productive suppliers of biomass-related provisioning ecosystem services, e.g. food, fibre, and energy. At the same time, they are highly dependent on good ecosystem condition and regulating ecosystem services such as soil fertility, water supply or soil erosion regulation. Assessments of this interplay of ecosystem condition and services are needed to understand the relationships in highly managed systems. Therefore, the aim of this study is twofold: First, to test the concept and indicators proposed by the European Union Working Group on Mapping and Assessment of Ecosystems and their Services (MAES) for assessing agroecosystem condition at a regional level. Second, to identify the relationships between ecosystem condition and the delivery of ecosystem services. For this purpose, we applied an operational framework for integrated mapping and assessment of ecosystems and their services. We used the proposed indicators to assess the condition of agroecosystems in Northern Germany and regulating ecosystem service control of erosion rates. We used existing data from official databases to calculate the different indicators and created maps of environmental pressures, ecosystem condition and ecosystem service indicators for the Federal State of Lower Saxony. Furthermore, we identified areas within the state where pressures are high, conditions are unfavourable, and more sustainable management practices are needed. Despite the limitations of the indicators and data availability, our results show positive, negative, and no significant correlations between the different pressures and condition indicators, and the control of erosion rates. The idea behind the MAES framework is to indicate the general condition of an ecosystem. However, we observed that not all proposed indicators can explain to what extent ecosystems can provide specific ecosystem services. Further research on other ecosystem services provided by agroecosystems would help to identify synergies and trade-offs. Moreover, the definition of a reference condition, although complicated for anthropogenically highly modified agroecosystems, would provide a benchmark to compare information on the condition of the ecosystems, leading to better land use policy and management decisions.


Author(s):  
Paula Rendon ◽  
Bastian Steinhoff-Knopp ◽  
Philipp Saggau ◽  
Benjamin Burkhard

AbstractEcosystems provide multiple services that are necessary to maintain human life and activities. Agroecosystems are very productive suppliers of biomass-related provisioning ecosystem services, e.g. food, fibre and energy. At the same time, they are highly dependent on respective ecosystem condition and regulating ecosystem services such as soil fertility, water supply or soil erosion regulation. Assessments of this interplay of ecosystem conditions and services are very important to understand the relationships in highly managed systems. Therefore, the aim of this study is twofold: First, to test the concept and indicators proposed by the European Union Working Group on Mapping and Assessment of Ecosystems and their Services (MAES) for the assessment of agroecosystem condition at a regional level. Second, to identify the relationships between ecosystem condition and the delivery of ecosystem services. For this purpose, we applied an operational framework for integrated mapping and assessment of ecosystems and their services. We used the proposed indicators to assess the condition of agroecosystems in Northern Germany and the provision of the regulating ecosystem service control of erosion rates. We used existing data that are available from official databases for the calculation of the different indicators. We show maps of environmental pressures, ecosystem condition and ecosystem service indicators for the Federal State of Lower Saxony. Furthermore, we identified areas within the state where pressures are high, conditions are limited, and more sustainable management practices are needed.Despite the limitations of the indicators and data availability, our results show positive, negative and no significant correlations between the different pressures and condition indicators, and the control of erosion rates. Although the idea behind the MAES framework is to show the general condition of an ecosystem, when looking at the relationships between condition and ecosystem services, we identified that not all the indicators - as they are proposed- are suitable to explain to what extent ecosystems are able to provide certain ecosystem services. Further research on other ecosystem services provided by agroecosystems would facilitate the identification of synergies and trade-offs. Moreover, the definition of a reference condition, although complicated for anthropogenically highly modified agroecosystems, would provide a benchmark to compare information on the condition of the ecosystems, leading to better land use policy and management decisions


2021 ◽  
Vol 13 (2) ◽  
pp. 844
Author(s):  
George Watene ◽  
Lijun Yu ◽  
Yueping Nie ◽  
Jianfeng Zhu ◽  
Thomas Ngigi ◽  
...  

The Kenya Great Rift Valley (KGRV) region unique landscape comprises of mountainous terrain, large valley-floor lakes, and agricultural lands bordered by extensive Arid and Semi-Arid Lands (ASALs). The East Africa (EA) region has received high amounts of rainfall in the recent past as evidenced by the rising lake levels in the GRV lakes. In Kenya, few studies have quantified soil loss at national scales and erosion rates information on these GRV lakes’ regional basins within the ASALs is lacking. This study used the Revised Universal Soil Loss Equation (RUSLE) model to estimate soil erosion rates between 1990 and 2015 in the Great Rift Valley region of Kenya which is approximately 84.5% ASAL. The mean erosion rates for both periods was estimated to be tolerable (6.26 t ha−1 yr−1 and 7.14 t ha−1 yr−1 in 1990 and 2015 respectively) resulting in total soil loss of 116 Mt yr−1 and 132 Mt yr−1 in 1990 and 2015 respectively. Approximately 83% and 81% of the erosive lands in KGRV fell under the low risk category (<10 t ha−1 yr−1) in 1990 and 2015 respectively while about 10% were classified under the top three conservation priority levels in 2015. Lake Nakuru basin had the highest erosion rate net change (4.19 t ha−1 yr−1) among the GRV lake basins with Lake Bogoria-Baringo recording annual soil loss rates >10 t ha−1 yr−1 in both years. The mountainous central parts of the KGRV with Andosol/Nitisols soils and high rainfall experienced a large change of land uses to croplands thus had highest soil loss net change (4.34 t ha−1 yr−1). In both years, forests recorded the lowest annual soil loss rates (<3.0 t ha−1 yr−1) while most of the ASAL districts presented erosion rates (<8 t ha−1 yr−1). Only 34% of all the protected areas were found to have erosion rates <10 t ha−1 yr−1 highlighting the need for effective anti-erosive measures.


2021 ◽  
Author(s):  
Jakub Stašek ◽  
Josef Krása ◽  
Adela Roudnická ◽  
Tomáš Dostál ◽  
Martin Mistr ◽  
...  

&lt;p&gt;There is still uncertainty in determining vegetation cover and management factor (C factor) for Universal Soil Loss Equation (USLE). Data we use today are often outdated, not specific and not representing local conditions. Current technologies in agriculture and recent crop varieties substantially vary from processes known during USLE (RUSLE) development.&lt;/p&gt;&lt;p&gt;Use of a rainfall simulator on a defined field crop is one way to obtain data for vegetation protection effect. Simulated rainfall is applied on experimental field with crop and bare soil as a reference. Plot size is 8x2 m and runoff and sediment transport is measured. Soil loss ratios are measured for three crop-development stages. Pre-sowing and post-harvest phases are measured as well. All measured data give information about soil protection for the whole season. In the span of 5 years, we have conducted over 340 field experiments on 15 typical, but also newly used crops and various management practices. The results are used in soil erosion and sediment transport analyses or models&amp;#8217; calibration. Metadata of experiments and results are added into a complex and public available database.&lt;/p&gt;&lt;p&gt;The contribution was prepared in the frame of projects No. QK1920224 (Possibilities of anti-erosion protection on farms to avoid the use of glyphosate), and H2020 SHUi (Soil Hydrology research platform underpinning innovation to manage water scarcity in European and Chinese cropping systems).&lt;/p&gt;


2020 ◽  
Author(s):  
Elmar Schmaltz ◽  
Georg Dersch ◽  
Christine Weinberger ◽  
Carmen Krammer ◽  
Peter Strauss

&lt;p&gt;Empirical models, such as the Revised Universal Soil Loss Equation (RUSLE) are in use since the 1950s to estimate the mean annual soil loss for single agricultural fields or spatially-distributed for larger areas (municipalities, regions or states). A particular focus on the computation of the RUSLE lies in the calculation of the respective factors on which the equation is built on and represent the erosivity of rainfall events, the erodibility of soils, the topography and land management. However, the RUSLE is highly susceptible to large errors in the prediction of the erosion rates of single agricultural parcels, due to the high variability of these factors in large areas (e.g. on national scale).&lt;/p&gt;&lt;p&gt;In this study, we present a parcel-sharp erosion map for the entire territory of Austria. We discuss frequent error sources of the factor computations and their consequences for the representativeness of erosion maps at nation-scale. Based on our results we discuss furthermore regional erosion hotspots and evaluate nationally funded management practices for soil erosion reduction as they are defined in the Austrian programme for an environmentally responsible agriculture (&amp;#214;PUL).&lt;/p&gt;&lt;p&gt;Since our approach depicts a novelty for Austria, we further describe opportunities for analysis of our results and highlight potential sources of errors, as well as regional and legal discrepancies of the distribution of national funds for soil conservation.&lt;/p&gt;


2013 ◽  
Vol 37 (5) ◽  
pp. 427-434 ◽  
Author(s):  
Junior Cesar Avanzi ◽  
Marx Leandro Naves Silva ◽  
Nilton Curi ◽  
Lloyd Darrell Norton ◽  
Samuel Beskow ◽  
...  

The process of water erosion occurs in watersheds throughout the world and it is strongly affected by anthropogenic influences. Thus, the knowledge of these processes is extremely necessary for planning of conservation efforts. This study was performed in an experimental forested watershed in order to predict the average potential annual soil loss by water erosion using the Universal Soil Loss Equation (USLE) and a Geographic Information System (GIS), and then compared with soil loss tolerance. All the USLE factors were generated in a distributed approach employing a GIS tool. The layers were multiplied in the GIS framework in order to predict soil erosion rates. Results showed that the average soil loss was 6.2 Mg ha-1 yr-1. Relative to soil loss tolerance, 83% of the area had an erosion rate lesser than the tolerable value. According to soil loss classes, 49% of the watershed had erosion less than 2.5 Mg ha-1 yr-1. However, about 8.7% of the watershed had erosion rates greater than 15 Mg ha-1 yr-1, being mainly related to Plinthosol soil class and roads, thus requiring special attention for the improvement of sustainable management practices for such areas. Eucalyptus cultivation was found to have soil loss greater than Atlantic Forest. Thus, an effort should be made to bring the erosion rates closer to the native forest. Implementation of the USLE model in a GIS framework was found to be a simple and useful tool for predicting the spatial variation of soil erosion risk and identifying critical areas for conservation efforts.


Soil Systems ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 19 ◽  
Author(s):  
José M. Mirás-Avalos ◽  
Juan M. Ramírez-Cuesta ◽  
María Fandiño ◽  
Javier J. Cancela ◽  
Diego S. Intrigliolo

Water erosion is a severe threat to soil resources, especially on cultivated lands, such as vineyards, which are extremely susceptible to soil losses. In this context, management practices aiming at reducing erosion risks must be favored. This current study aimed at estimating soil losses in two vineyards under Atlantic climatic conditions (Galicia, North West Spain). The capacity of two management practices for reducing soil erosion was tested and compared with tilled soil in the inter-rows: (i) application of mulching, and (ii) maintaining native vegetation. Soil losses were assessed using erosion pins and micro-plots. In addition, the improved stock unearthing method (ISUM) was employed in one of the vineyards to estimate soil remobilization since plantation. Soil loss rates in one of the vineyards were lower when soil was managed under mulching (0.36 Mg ha−1) and native vegetation (0.42 Mg ha−1), compared to tilled soil (0.84 Mg ha−1). Sediment losses measured in the second vineyard ranged between 0.21 and 0.69 Mg ha−1, depending on the treatment, but no clear conclusions could be drawn. Long-term soil loss, as estimated by ISUM, was of the same order of magnitude than that obtained by erosion pins and micro-plots. In both vineyards, soil loss rates were lower than those registered in Mediterranean vineyards, and were below the limit for sustainable erosion in Europe. Nevertheless, soil management practices alternative to tillage in the inter-row might reduce erosion risks under Atlantic climate conditions.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 551 ◽  
Author(s):  
Jesús Rodrigo-Comino ◽  
José María Senciales-González ◽  
Enric Terol ◽  
Gaspar Mora-Navarro ◽  
Yeboah Gyasi-Agyei ◽  
...  

To understand soil erosion processes, it is vital to know how the weather types and atmospheric situations, and their distribution throughout the year, affect the soil erosion rates. This will allow for the development of efficient land management practices to mitigate water-induced soil losses. Vineyards are one of the cultivated areas susceptible to high soil erosion rates. However, there is a lack of studies that link weather types and atmospheric conditions to soil erosion responses in viticultural areas. Thus, the main aim of this research is to assess the impacts of weather types and atmospheric conditions on soil erosion processes in a conventional vineyard with tillage in eastern Spain. To achieve this goal, rainfall events from 2006 to 2017 were monitored and the associated runoff and soil loss were collected from experimental plots. Our results showed that the highest volume of runoff and soil erosion is linked to rainfall associated with the eastern winds that accounted for 59.7% of runoff and 63.9% of soil loss, while cold drops in the atmospheric situation classifications emerged as the highest contributor of 40.9% in runoff and 44.1% in soil loss. This paper provides new insights into the development of soil erosion control measures that help to mitigate the negative impact of extreme rainfall and runoff considering atmospheric conditions.


2014 ◽  
Vol 18 (9) ◽  
pp. 3763-3775 ◽  
Author(s):  
K. Meusburger ◽  
G. Leitinger ◽  
L. Mabit ◽  
M. H. Mueller ◽  
A. Walter ◽  
...  

Abstract. Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959–2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha−1 yr−1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha−1 yr−1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document