scholarly journals Integrating ecosystem services into decision support for management of agroecosystems: Viva Grass tool

One Ecosystem ◽  
2020 ◽  
Vol 5 ◽  
Author(s):  
Ivo Vinogradovs ◽  
Miguel Villoslada ◽  
Oļģerts Nikodemus ◽  
Anda Ruskule ◽  
Kristina Veidemane ◽  
...  

The area covered by low-input agroecosystems (e.g. semi-natural and permanent grasslands) in Europe has considerably decreased throughout the last century. To support more sustainable management practices and to promote biodiversity and ecosystem service values of such agroecosystems, a decision support tool was developed. The tool aims to enhance the implementation of ecosystem services and address the challenge of their integration into spatial planning. The Viva Grass tool aims to enhance the maintenance of ecosystem services delivered by low-input agroecosystems. It does so by providing spatially-explicit decision support for land-use planning and sustainable management of agroecosystems. The Viva Grass tool is a multi-criteria decision analysis tool for integrated planning. It is designed for farmers, spatial planners and policy-makers to support decisions for management of agroecosystems. The tool has been tested to assess spatial planning in eight case studies across the Baltic States.

2017 ◽  
Vol 165 ◽  
pp. 206-219 ◽  
Author(s):  
Adrienne Grêt-Regamey ◽  
Jürg Altwegg ◽  
Elina A. Sirén ◽  
Maarten J. van Strien ◽  
Bettina Weibel

Ecosystems ◽  
2008 ◽  
Vol 11 (6) ◽  
pp. 923-938 ◽  
Author(s):  
Colin M. Beier ◽  
Trista M. Patterson ◽  
F. Stuart Chapin

2007 ◽  
Vol 4 (2) ◽  
pp. 747-775 ◽  
Author(s):  
P. Cau ◽  
C. Paniconi

Abstract. Quantifying the impact of land use on water supply and quality is a primary focus of environmental management. In this work we apply a semidistributed hydrological model (SWAT) to predict the impact of different land management practices on water and agricultural chemical yield for a study site situated in the Arborea region of central Sardinia, Italy. The physical processes associated with water movement, crop growth, and nutrient cycling are directly modeled by SWAT. The model simulations are used to identify indicators that reflect critical processes related to the integrity and sustainability of the ecosystem. Specifically we focus on stream quality and quantity indicators associated with anthropogenic and natural sources of pollution. A multicriteria decision support system is then used to develop the analysis matrix where water quality and quantity indicators for the rivers, lagoons, and soil are combined with socio-economic variables. The DSS is used to assess four options involving alternative watersheds designated for intensive agriculture and dairy farming and the use or not of treated wastewater for irrigation.


Author(s):  
Fernanda Santos Araujo ◽  
Vicente Nepomuceno Oliveira ◽  
Denise Alvarez ◽  
Helder Costa

Company recovery is a practice developed by workers who, in the imminence of becoming unemployed, negotiate or fight for access to the means of production of bankrupting companies, and start to manage them collectively, guided by the principles of self-management.  Nevertheless, how to assess self-management in worker-recovered companies (WRCs)? The criteria selected by a bibliographic review on the concept of self-management were used in dealing with the data collected by the Brazilian WRCs national mapping. A multi-criteria decision support tool was used to build a model for analyzing and classifying the companies in three categories related to their form of management. The multi-criteria approach allowed to create an assessment of self-management practices in the WRCs studied.


2018 ◽  
Vol 22 (7) ◽  
pp. 3789-3806 ◽  
Author(s):  
Junyu Qi ◽  
Sheng Li ◽  
Charles P.-A. Bourque ◽  
Zisheng Xing ◽  
Fan-Rui Meng

Abstract. Decision making on water resources management at ungauged, especially large-scale watersheds relies on hydrological modeling. Physically based distributed hydrological models require complicated setup, calibration, and validation processes, which may delay their acceptance among decision makers. This study presents an approach to develop a simple decision support tool (DST) for decision makers and economists to evaluate multiyear impacts of land use change and best management practices (BMPs) on water quantity and quality for ungauged watersheds. The example DST developed in the present study was based on statistical equations derived from Soil and Water Assessment Tool (SWAT) simulations and applied to a small experimental watershed in northwest New Brunswick. The DST was subsequently tested against field measurements and SWAT simulations for a larger watershed. Results from DST could reproduce both field data and model simulations of annual stream discharge and sediment and nutrient loadings. The relative error of mean annual discharge and sediment, nitrate–nitrogen, and soluble-phosphorus loadings were −6, −52, 27, and −16 %, respectively, for long-term simulation. Compared with SWAT, DST has fewer input requirements and can be applied to multiple watersheds without additional calibration. Also, scenario analyses with DST can be directly conducted for different combinations of land use and BMPs without complex model setup procedures. The approach in developing DST can be applied to other regions of the world because of its flexible structure.


Author(s):  
Kefyalew Sahle Kibret ◽  
Amare Haileslassie ◽  
Wolde Mekuria Bori ◽  
Petra Schmitter

Abstract Land degradation is a global challenge that affects lives and livelihoods in many communities. Since 1950, about 65% of Africa's cropland, on which millions of people depend, has been affected by land degradation caused by mining, poor farming practices and illegal logging. One-quarter of the land area of Ethiopia is severely degraded. As part of interventions to restore ecosystem services, exclosures have been implemented in Ethiopia since the 1980s. But the lack of tools to support prioritization and more efficient targeting of areas for large-scale exclosure-based interventions remains a challenge. Within that perspective, the overarching objectives of the current study were: (i) to develop a Geographic Information System-based multicriteria decision-support tool that would help in the identification of suitable areas for exclosure initiatives; (ii) to provide spatially explicit information, aggregated by river basin and agroecology, on potential areas for exclosure interventions and (iii) to conduct ex-ante analysis of the potential of exclosure areas for improving ecosystem services in terms of increase in above-ground biomass (AGB) production and carbon storage. The results of this study demonstrated that as much as 10% of Ethiopia's land area is suitable for establishing exclosures. This amounts to 11 million hectares (ha) of land depending on the criteria used to define suitability for exclosure. Of this total, a significant proportion (0.5–0.6 million ha) is currently under agricultural land-use systems. In terms of propriety river basins, we found that the largest amount of suitable area for exclosures falls in the Abay (2.6 million ha) and Tekeze (2.2 million ha) river basins, which are hosts to water infrastructure such as hydropower dams and are threatened by siltation. Ex-ante analysis of ecosystem services indicated that about 418 million tons of carbon can be stored in the AGB through exclosure land use. Ethiopia has voluntarily committed to the Bonn Challenge to restore 15 million ha of degraded land by 2025. The decision-support tool developed by the current study and the information so generated go toward supporting the planning, implementation and monitoring of these kinds of local and regional initiatives.


Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 440 ◽  
Author(s):  
Irina Cristal ◽  
Aitor Ameztegui ◽  
Jose Ramon González-Olabarria ◽  
Jordi Garcia-Gonzalo

In the climate change era, forest managers are challenged to use innovative tools to encourage a sustained provision of goods and services. Many decision support tools (DSTs), developed to address global changes in forest management practices, reflect the complexity of the scientific knowledge produced, a fact that could make it difficult for practitioners to understand and adopt them. Acknowledging the importance of knowledge transfer to forestry practitioners, this study describes a user-centric decision support software tool, aiming to assess forest management and climate change impacts on multiple ecosystem services (ESs) at a stand level. SORTIE-ND, a spatially explicit tree-level simulator for projecting stand dynamics that is sensitive to climate change, is encapsulated into the decision support tool and used as the simulation engine for stand development. Linking functions are implemented to evaluate ecosystem services and potential risks, and decision support is provided in form of interactive 2D and 3D visualizations. Five main components were identified to delineate the workflow and to shape the decision support tool: the information base, the alternative generator, the forest simulator, the ecosystem services calculator, and the visualization component. In order to improve the interaction design and general user satisfaction, the usability of the system was tested at an early stage of the development. While we have specifically focused on a management-oriented approach through user-centric interface design, the utilization of the product is likely to be of importance in facilitating education in the field of forest management.


Sign in / Sign up

Export Citation Format

Share Document