scholarly journals Systematic revision of the trans-Bassian moriomorphine genus Theprisa Moore (Coleoptera, Carabidae)

ZooKeys ◽  
2021 ◽  
Vol 1044 ◽  
pp. 339-373
Author(s):  
James K. Liebherr ◽  
Nick Porch ◽  
Matthew Shaw ◽  
Bronte E. Sinclair ◽  
David R. Maddison

The Australian genus Theprisa Moore, 1963, is taxonomically revised to comprise five species, two newly described: Theprisa darlingtoni Liebherr & Porch, sp. nov. of Tasmania, and Theprisa otway Liebherr, Porch & Maddison, sp. nov. from the Otway Ranges, Victoria. Two previously described species, T. australis (Castelnau) and T. montana (Castelnau), are distributed in the mountains of Victoria. The third previously described species, T. convexa (Sloane) is found in Tasmania. A lectotype is designated for T. convexa because the various syntypes are ambiguously labelled. Cladistic analysis based on morphological characters establishes monophyly of Theprisa relative to the Australian genera Sitaphe Moore and Spherita Liebherr. This and a second clade of Australian genera (Pterogmus Sloane, Thayerella Baehr, and Neonomius Moore) do not form a natural group, but are cladistically interdigitated among two monophyletic New Zealand lineages (Tarastethus Sharp, and Trichopsida Larochelle and Larivière) suggesting substantial trans-Tasman diversification among these groups. Hypothesized relationships within Theprisa are consistent with two bouts of speciation involving the Bass Strait; an initial event establishing T. convexa as adelphotaxon to the other four species, and a more recent event establishing the sister species T. darlingtoni and T. montana. Geographic restriction of T. otway to the Otway Ranges is paralleled by Otway endemics in several other carabid beetle genera, as well as by endemics in numerous other terrestrial arthropod taxa. Whereas these numerous Otway endemics support the distinctive nature of the Otway Range fauna, their biogeographic relationships are extremely varied, illustrating that the Otways have accrued their distinctive biodiversity via various means.

Zootaxa ◽  
2010 ◽  
Vol 2658 (1) ◽  
pp. 38 ◽  
Author(s):  
MARIANO C. MICHAT ◽  
YVES ALARIE ◽  
CHRIS H. S. WATTS

The first-instar larva of Neobidessodes Hendrich & Balke (through the hypogaeic species N. limestoneensis (Watts & Humphreys)) and the third-instar larva of Hydroglyphus Motschulsky (through H. balkei Hendrich) (Dytiscidae: Bidessini) are described and illustrated in detail for the first time, including detailed morphometric and chaetotaxic analyses of the cephalic capsule, head appendages, legs, last abdominal segment and urogomphi. A cladistic analysis including 51 characters and 32 hydroporine taxa is performed, which supports the inclusion of both genera in the tribe Bidessini based on the absence of the primary pore ABc on the last abdominal segment. The third instar of H. balkei is characterized by the absence of secondary setae on the urogomphi and anterior secondary setae on the coxa, and the presence of 8–9 secondary setae on the mesofemur. On the other hand, the first instar of N. limestoneensis bears 14 lamellae clypeales on the anteroventral margin of the nasale. This species has evolved several morphological characters that are probably associated with its hypogaeic existence, including a lightly sclerotized body, relatively longer cephalic capsule and mandibles, a strongly reduced occipital foramen, absence of stemmata, and short claws. However, primary chaetotaxy apparently has remained as a very conservative expression of the phenotype.


Zootaxa ◽  
2012 ◽  
Vol 3510 (1) ◽  
pp. 1 ◽  
Author(s):  
RICARDO PAREDES-LEÓN ◽  
HANS KLOMPEN ◽  
TILA M. PÉREZ

A cladistic analysis based on 274 morphological characters was performed including the 13 previously recognized speciesof the scale mite genus Hirstiella, 2 new species, 5 species in closely related genera, and 3 more distant out-group species.An analysis based on 148 informative characters resulted in one most parsimonious tree (L = 400, CI = 0.57 and RI =0.79). According to this, the genus Hirstiella in its current concept is a polyphyletic taxon whose member species belongto three different clades. The first lineage (Bremer support and jackknife values 2 and 78%) includes the type species H.trombidiiformis and seven additional species of Hirstiella that are parasites on iguanian lizards. The genus Geckobiella isincluded in this lineage, and the latter taxon name has priority over Hirstiella; therefore, the genus Hirstiella is considereda synonym of Geckobiella and no longer valid. For the second lineage (Bremer support and jackknife values of 2 and 73%)we propose the name Bertrandiella gen. nov.; it includes H. tenuipes, H. otophila, H. jimenezi and Bertrandiella chame-laensis sp. nov. The third lineage, and sister taxon of Bertrandiella, is a clade comprising Pimeliaphilus and the speciesH. sharifi and H. insignis. The latter taxa are transferred back to Pimeliaphilus (Bremer support and jackknife values >4and 100%). Updated diagnoses are provided for the genera Geckobiella sensu nov. (including a new species Geckobielladonnae sp. nov.) and Bertrandiella gen. nov., and for all their species, as well as for the genera Pimeliaphilus sensu nov.and Tequisistlana, based on the results of the phylogenetic analyses. The analyses support the hypothesis that lizards arethe ancestral hosts for Pterygosomatidae; associations with arthropods (in Pimeliaphilus) appear to be secondary, the result of host switching from lizards.


Zootaxa ◽  
2019 ◽  
Vol 4568 (1) ◽  
pp. 185 ◽  
Author(s):  
LUCIANE AUGUSTO DE AZEVEDO FERREIRA ◽  
MARCOS TAVARES

All previous records of Pachycheles rugimanus A. Milne-Edwards, 1880, from the Brazilian coast are reviewed and prove to represent a new species, P. coelhoi sp. nov. (from Amapá, northern Brazilian coast), and P. ackleianus A. Milne-Edwards, 1880, a species already known from Brazil (from Pará to Rio de Janeiro). The new species is described and illustrated, and compared to its most similar congeners: P. rugimanus and P. ackleianus from the western Atlantic, and P. velerae Haig, 1960, from the eastern Pacific (Galapagos Island and Cocos Island). Pachycheles coelhoi sp. nov. is distinguishable from the other three species by a suite of morphological characters, which include the ornamentation of the carapace and chelipeds, and the shape of the third thoracic sternite. All previous records of P. rugimanus from Brazil are considered invalid. 


2007 ◽  
Vol 38 (3) ◽  
pp. 335-359 ◽  
Author(s):  
Sergio Roig-Juñent ◽  
Martha Domínguez ◽  
Federico Agrain

AbstractThe subgenus M. (Scaphigenia) Lacordaire includes six species distributed in arid regions of South America. A systematic revision of this subgenus is presented, including re-descriptions and an update of distribution data of the six species. A preliminary cladistic analysis is performed to test the relationships among the species of the subgenus and if the morphological characters used are suitable. A key is presented to separate the seven subgenera of Megalostomis Chevrolat as well as a key for the species of the subgenus M. (Scaphigenia). Male aedeagus internal sac of the nine studied taxa are described and illustrated. This constitutes the first internal sac descriptions for members of this subtribe and could help clarify the homology of such structures within Cryptocephalinae. M. (S) consimilis Achard is reassigned to the species status on the base of genitalic characters. The cladistic analysis was done using forty-one characters from adult external morphology and male and female genitalia. Two species of two different subgenera of Megalostomis: M. (Megalostomis), and M. (Heterostomis) Lacordaire, and one representative of the genus Themesia Lacordaire were selected as out groups. Results were obtained by implicit enumeration using parsimony software. Three equally parsimonious trees were obtained of 45 steps, Ri=0.952, and Ci= 0.941. Support of each group was evaluated by Jacknifing, Bootstrap and Bremer values. Relationships between species are discussed.


2012 ◽  
Vol 26 (1) ◽  
pp. 41 ◽  
Author(s):  
Gerasimos Cassis ◽  
Celia Symonds

The Australian endemic ant-mimetic seed bug genus Daerlac is revised. This paper provides a redescription of the genus Daerlac and four species: D. apicalis, D. cephalotes, D. nigricans and D. picturatus. Daerlac tricolor is synonomised with D. cephalotes. A taxonomic key to species is provided. Known distributions of D. apicalis, D. nigricans and D. picturatus are each extended beyond previously known ranges. Daerlac species are found predominantly in temperate open forest and woodlands in association with ants and eucalypts. All species are broadly distributed and there is a high degree of overlap in distributions. They are seed predators found on the ground, in leaf litter, under bark or on trunks of eucalypts, and putatively forage on post-dispersed seeds. Cladistic analysis of morphological characters finds that the four species of Daerlac form two well-supported sister-groups (D. apicalis + D. picturatus, and D. cephalotes + D. nigricans). A discussion of the distribution, biology and myrmecomorphy of the genus is provided, and the tribal placement of Daerlac and its relationship to Laryngodus are discussed.


Zootaxa ◽  
2005 ◽  
Vol 878 (1) ◽  
pp. 1
Author(s):  
KOUKI FUKUOKA ◽  
NIEL L. BRUCE

Tenagomysis longisquama sp. nov. is described from South Island, New Zealand. T. longisquama is readily distinguished from the other species of Tenagomysis by the elongate antennal scale with an acute apex and the 10to 16-subsegmented carpopropodus of the third to eighth thoracopodal endopods. T. macropsis Tattersall, 1923 and T. producta Tattersall, 1923, and an unidentifiable species, Tenagomysis sp., are also recorded from South Island. A key to the New Zealand species of Tenagomysis is provided.


Zootaxa ◽  
2012 ◽  
Vol 3577 (1) ◽  
pp. 1 ◽  
Author(s):  
HIROYUKI TAKAOKA

Simulium (Gomphostilbia) Enderlein, the third largest (206 named species included) in the genus Simulium Latreille s. l., is one of the two most abundant and diverse subgenera in the Oriental Region. To provide a classification scheme to facilitate morphological identification of the species within this subgenus, its diagnostic characters are redefined, and nine known species-groups within it are reviewed. Based on putative lineages explored by using certain adult morphological characters, seven more species-groups are proposed: asakoae, darjeelingense, epistum, gombakense, heldsbachense, hemicyclium and palauense species-groups, while the trirugosum species-group is merged in the varicorne species-group. Subgroups are also introduced to represent apparently different lineages within certain species-groups based on certain pupal morphological characters: two in the banauense species-group, seven in the batoense species-group redefined, four in the ceylonicum species-group redefined, four in the epistum species-group, two in the hemicyclium species-group, two in the sherwoodi species-group and four in the varicorne species-group redefined. A new checklist of species of the subgenus Gomphostilbia, and a key to all 15 species-groups within it are provided. The eastward expansion of the geographical distribution of the subgenus Gomphostilbia is inferred on the basis of the more frequent occurrence of apomorphic characters of certain adult and pupal morphological features in insular species-groups than in continental species-groups. A preliminary attempt using a cladistic analysis of morphological characters shows that among 10 subgenera examined, Gomphostilbia has a sister-taxon relationship with the Australasian subgenus Morops Enderlein, and this clade, together with the Central-Western Pacific subgenus Inseliellum Rubtsov, is positioned closest to the most derived clade formed by Daviesellum Takaoka & Adler and Simulium Latreille s. str.


Phytotaxa ◽  
2020 ◽  
Vol 438 (4) ◽  
pp. 223-236
Author(s):  
BÁLINT DIMA ◽  
KARL SOOP

Cortinarius section Xenosmatae, originally based on solely morphological characters, was subsequently shown to contain phylogenetically distantly related species. The type species C. xenosma is a singleton, and this study aims to revise the other members of the section using combined molecular (nrDNA ITS and LSU) and morphological data. Based on phylogenetic analyses using RAxML, PhyML and Bayesian Inference and additional morphological features one new species (C. paraxenosma) and one new section (sect. Olorinati) are proposed. Furthermore sect. Carbonelli is extended and emended to include two former members of sect. Xenosmatae. A key to the species in New Zealand with xenosmatoid morphology is provided.


1998 ◽  
Vol 11 (4) ◽  
pp. 267 ◽  
Author(s):  
J. P. Rourke

In Africa the Proteaceae are represented by 16 genera of which two (Dilobeia Thouars. and Malagasia L.Johnson and B.Briggs) are endemic to Madagascar and one (Faurea Harv.) is common to both Madagascar and Africa where it is widespread in forest and savannah woodland from the southern Cape to Eritrea. The remaining 13 genera are Cape-centred (10 are endemic to the western Cape) and with the exception of the monotypic riverine Brabejum L. (Grevilleoideae), are confined to fynbos (heathland) communities on oligotrophic soils. These 12 Cape heathland genera currently assigned to two subtribes (Proteinae and Aulacinae) within the subfamily Proteoideae have all been recently revised or are in the final stages of revision. Preliminary cladistic studies now suggest that they could be arranged in several new subtribes within the subfamily Proteoideae to reflect more accurately their phylogenetic relationships. Using morphological characters in a cladistic analysis, the South African Proteoideae (tribe Proteeae) resolve into two broad groups; Aulax Berg., Faurea Harv. and Protea L. form a weakly supported group while the second, large, well-supported group resolves into two clades in which the heterogeneous Leucadendron R.Br. stands apart while the other clade underpinned by Vexatorella Rourke resolves into two further groups, the ‘Leucospermum group’ and the ‘Serruria group’. The dioecious genera Leucadendron and Aulax previously united in the subtribe Aulacinae have been shown to differ markedly and should probably be placed in separate subtribes. Selection pressure, especially from fire and pollinators, has resulted in major morphological modifications in the 12 fynbos genera from the western Cape.


2002 ◽  
Vol 16 (6) ◽  
pp. 957 ◽  
Author(s):  
J. T. Jennings ◽  
A. D. Austin

This study examines the phylogeny, taxonomy, distribution and biology of the gasteruptiid subfamily Hyptiogastrinae and, at the same time, presents an overview of the family. Following a cladistic analysis of 35 discrete morphological characters, two monophyletic genera are recognised, Hyptiogaster Kieffer and Pseudofoenus s. l. Kieffer. As a consequence, the genera Aulacofoenus Kieffer, Crassifoenus Crosskey, and Eufoenus Szépligeti are synonymised with Pseudofoenus. A total of 88 species are recognised for the subfamily, 10 species of Hyptiogaster, which are restricted to mainland Australia, and 78 species of Pseudofoenus, 40 of which are described as new. Pseudofoenus has a restricted Gondwanan distribution and is found in Australia including Tasmania (65 spp.), New Guinea and New Britain (5 spp.), the south-west Pacific (New Caledonia, New Hebrides and Fiji – 2 spp.), New Zealand (4 spp.) and South America (2 spp.). No new species have been recorded from either New Zealand or South America. For Pseudofoenus, information on the distribution of each species, their biology (if known) and an identification key are presented.Following a taxonomic revision, the following new species are described: P. baileyi, sp. nov., P. baitetaensis, sp. nov., P. beverlyae, sp. nov., P. caperatus, sp. nov., P. cardaleae, sp. nov., P. carrabinensis, sp. nov., P. claireae, sp. nov., P. collessi, sp. nov., P. coorowensis, sp. nov., P. crosskeyi, sp. nov., P. douglasorum, sp. nov., P. eliseae, sp. nov., P. ericae, sp. nov., P. eustonensis, sp. nov., P. feckneri, sp. nov., P. gressitti, sp. nov., P. gullanae, sp. nov., P. hackeri, sp. nov., P. imbricatus, sp. nov., P. iqbali, sp. nov., P. kadowi, sp. nov., P. karimuiensis, sp. nov., P. kelleri, sp. nov., P. leinsterensis, sp. nov., P. macdonaldi, sp. nov., P. malkini, sp. nov., P. marshalli, sp. nov., P. masneri, sp. nov., P. mitchellae, sp. nov., P. morganensis, sp. nov., P. nalbarraensis, sp. nov., P. pumilis, sp. nov., P. schmidti, sp. nov., P. stevensi, sp. nov., P. tasmaniensis, sp. nov., P. taylori, sp. nov., P. umboiensis, sp. nov., P. walkeri, sp. nov. and P. zborowskii, sp. nov. The synonymy of Aulacofoenus, Crassifoenus and Eufoenus with Pseudofoenus result in the following new combinations: from Aulacofoenus: P. bungeyi (Jennings & Austin), comb. nov., P. deletangi (Schletterer), comb. nov., P. fallax (Schletterer), comb. nov., P. fletcheri (Jennings & Austin), comb. nov., P. goonooensis (Jennings & Austin), comb. nov., P. infumatus (Schletterer), comb. nov., P. kurmondi (Jennings & Austin), comb. nov., P. loxleyi (Jennings & Austin), comb. nov., P. marionae (Jennings & Austin), comb. nov., P. perenjorii (Jennings & Austin), comb. nov., P. swani (Jennings & Austin), comb. nov., P. thoracicus (Guérin Menéville), comb. nov., P. whiani (Jennings & Austin), comb. nov. and P. wubinensis (Jennings & Austin), comb. nov.; from Crassifoenus: P. houstoni (Jennings & Austin), comb. nov., P. grossitarsis (Kieffer), comb. nov and P. macronyx (Schletterer), comb. nov.; and from Eufoenus: P. antennalis (Schletterer), comb. nov., P. australis (Westwood), comb. nov., P. crassitarsis (Kieffer), comb. nov., P. darwini (Westwood), comb. nov., P. extraneus (Turner), comb. nov., P. ferrugineus (Crosskey), comb. nov., P. floricolus (Turner), comb. nov., P. inaequalis (Turner), comb. nov., P. melanopleurus (Crosskey), comb. nov., P. minimus (Turner), comb. nov., P. nitidiusculus (Turner), comb. nov., P. patellatus (Westwood), comb. nov., P. pilosus (Kieffer), comb. nov., P. reticulatus (Crosskey), comb. nov., P. rieki (Crosskey), comb. nov., P. ritae (Cheesman), comb. nov. and P. spinitarsis (Westwood), comb. nov. Pseudofoenus microcephalus (Crosskey), comb. nov. is transferred from Hyptiogaster and Eufoenus flavinervis (Kieffer) remains incertae sedis.


Sign in / Sign up

Export Citation Format

Share Document