scholarly journals Thysanoptera of Canada

ZooKeys ◽  
2019 ◽  
Vol 819 ◽  
pp. 291-294 ◽  
Author(s):  
Robert G. Foottit ◽  
H. Eric L. Maw

The known Canadian Thysanoptera fauna currently consists of 147 species, including 28 non-native species, and there are five additional species found only indoors. DNA barcoding data, presence of species in adjacent regions, and preliminary evidence of the presence of host-associated cryptic species suggest that there may be as many as 255 additional species awaiting discovery or description in Canada.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Tai Wang ◽  
Yan-ping Zhang ◽  
Zhuo-yu Yang ◽  
Zhe Liu ◽  
Yan-yan Du

Abstract Background The northeastern part of the Qinghai-Tibet Plateau (QTP) presents a high number of plateau loach species. As one of the three major groups of fishes distributed on the QTP, plateau loach has high ecological value. However, the taxonomy and systematics of these fish are still controversial, and a large number of new species have been reported. The reason for this phenomenon is that the degree of morphological variation is low, the phylogenetic information provided by morphological and anatomical features used for species identification is relatively poor, and many cryptic species are observed. Based on the high-density sampling points from the biodiversity hotspots surveyed, this study aims to evaluate the biodiversity of plateau loach in the northeastern part of the QTP and reveal the hidden diversity by comparing morphological species with molecular operational taxonomic units (MOTUs). Results After careful identification and comparison of the morphology and DNA barcoding of 1630 specimens, 22 species were identified, with 20 considered valid local species and two identified as new species that had not been previously described. Based on the combination of morphological and molecular methods, a total of 24 native species were found, two of which were cryptic species: Triplophysa robusta sp1 and Triplophysa minxianensis sp1. Fourteen of the 24 species form clusters of barcodes that allow them to be reliably identified. The remaining cases involved 10 closely related species, including rapidly differentiated species and species that seemed to have experienced incomplete lineage sorting or showed introgressions. Conclusions The results highlight the need to combine traditional taxonomies with molecular methods to correctly identify species, especially closely related species, such as the plateau loach. This study provides a basis for protecting the biodiversity of plateau loach.


2020 ◽  
Author(s):  
tai wang ◽  
Yanping Zhang ◽  
Zhuoyu Yang ◽  
Zhe Liu ◽  
Yanyan Du

Abstract Background: The northeastern part of the Qinghai-Tibet Plateau (QTP) is one of the areas where the number of species of plateau loach is the largest. As one of the three major groups of fishes distributed on the QTP, plateau loach have very important ecological value. However, their taxonomy and systematics are still controversial, and a large number of new species have been reported. The reason for this phenomenon is that the degree of morphological variation is low, the phylogenetic information provided by morphological and anatomical features used for species identification is relatively poor, and there are many cryptic species. Based on the high-density sampling points from the biodiversity hotspots surveyed, this study aims to evaluate the taxonomic characteristics of the plateau loach by means of morphology, DNA barcoding and multiple species demarcation methods to accurately describe species and allocate taxonomic units to unknown specimens. Results: After careful identification and comparison of the morphology and DNA barcoding of 1,630 specimens, 22 species were identified, 20 of which were considered valid local species and two of which were new species that had not been described. Based on the combination of morphological and molecular methods, a total of 24 native species have been found, two of which are cryptic species: Triplophysa robusta sp1 and Triplophysa minxianensis sp1. Fourteen of the 24 species form clusters of barcodes, which allow them to be reliably identified. The remaining cases involved 10 closely related species, some of which were rapidly differentiated, had a disputed taxonomic status, or showed introgressions.Conclusions: The results highlight the need to combine traditional taxonomies with molecular methods to correctly identify species, especially in closely related species such as the plateau loach. This study provides a basis for protecting the biodiversity of plateau loach.


2020 ◽  
Author(s):  
tai wang ◽  
Yanping Zhang ◽  
Zhuoyu Yang ◽  
Zhe Liu ◽  
Yanyan Du

Abstract Background: The northeastern part of the Qinghai-Tibet Plateau (QTP) is one of the areas where the number of species of plateau loach is the largest. As one of the three major groups of fishes distributed on the QTP, plateau loach have very important ecological value. However, their taxonomy and systematics are still controversial, and a large number of new species have been reported. The reason for this phenomenon is that the degree of morphological variation is low, the phylogenetic information provided by morphological and anatomical features used for species identification is relatively poor, and there are many cryptic species. Based on the high-density sampling points from the biodiversity hotspots surveyed, this study aims to evaluate the biodiversity of plateau loach in the northeastern of QTP and reveal the hidden diversity by comparing morphologic species with molecular operational taxonomic units (MOTUs). Results: After careful identification and comparison of the morphology and DNA barcoding of 1,630 specimens, 22 species were identified, 20 of which were considered valid local species and two of which were new species that had not been described. Based on the combination of morphological and molecular methods, a total of 24 native species have been found, two of which are cryptic species: Triplophysa robusta sp1 and Triplophysa minxianensis sp1. Fourteen of the 24 species form clusters of barcodes, which allow them to be reliably identified. The remaining cases involved 10 closely related species, some of which were rapidly differentiated, seemed to have experienced incomplete lineage sorting, or showed introgressions.Conclusions: The results highlight the need to combine traditional taxonomies with molecular methods to correctly identify species, especially in closely related species such as the plateau loach. This study provides a basis for protecting the biodiversity of plateau loach.


2020 ◽  
Author(s):  
Tai Wang ◽  
Yanping Zhang ◽  
Zhuoyu Yang ◽  
Zhe Liu ◽  
Yanyan Du

Abstract Background: The northeastern part of the Qinghai-Tibet Plateau (QTP) presents a high number of plateau loach species. As one of the three major groups of fishes distributed on the QTP, plateau loach has high ecological value. However, the taxonomy and systematics of these fish are still controversial, and a large number of new species have been reported. The reason for this phenomenon is that the degree of morphological variation is low, the phylogenetic information provided by morphological and anatomical features used for species identification is relatively poor, and many cryptic species are observed. Based on the high-density sampling points from the biodiversity hotspots surveyed, this study aims to evaluate the biodiversity of plateau loach in the northeastern part of the QTP and reveal the hidden diversity by comparing morphological species with molecular operational taxonomic units (MOTUs).Results: After careful identification and comparison of the morphology and DNA barcoding of 1,630 specimens, 22 species were identified, with 20 considered valid local species and two identified as new species that had not been previously described. Based on the combination of morphological and molecular methods, a total of 24 native species were found, two of which were cryptic species: Triplophysa robusta sp1 and Triplophysa minxianensis sp1. Fourteen of the 24 species form clusters of barcodes that allow them to be reliably identified. The remaining cases involved 10 closely related species, including rapidly differentiated species and species that seemed to have experienced incomplete lineage sorting or showed introgressions.Conclusions: The results highlight the need to combine traditional taxonomies with molecular methods to correctly identify species, especially closely related species, such as the plateau loach. This study provides a basis for protecting the biodiversity of plateau loach.


ZooKeys ◽  
2019 ◽  
Vol 819 ◽  
pp. 9-40 ◽  
Author(s):  
David W. Langor

Based on data presented in 29 papers published in theBiota of CanadaSpecial Issue of ZooKeys and data provided herein about Zygentoma, more than 44,100 described species of terrestrial arthropods (Arachnida, Myriapoda, Insecta, Entognatha) are now known from Canada. This represents more than a 34% increase in the number of described species reported 40 years ago (Danks 1979a). The most speciose groups are Diptera (9620 spp.), Hymenoptera (8757), and Coleoptera (8302). Less than 5% of the fauna has a natural Holarctic distribution and an additional 5.1% are non-native species. A conservatively estimated 27,000–42,600 additional species are expected to be eventually discovered in Canada, meaning that the total national species richness is ca. 71,100–86,700 and that currently 51–62% of the fauna is known. Of the most diverse groups, those that are least known, in terms of percent of the Canadian fauna that is documented, are Acari (31%), Thysanoptera (37%), Hymenoptera (46%), and Diptera (32–65%). All groups but Pauropoda have DNA barcodes based on Canadian material. More than 75,600 Barcode Index Numbers have been assigned to Canadian terrestrial arthropods, 63.5% of which are Diptera and Hymenoptera. Much work remains before the Canadian fauna is fully documented, and this will require decades to achieve. In particular, greater and more strategic investment in surveys and taxonomy (including DNA barcoding) is needed to adequately document the fauna.


2020 ◽  
Author(s):  
tai wang ◽  
Yanping Zhang ◽  
Zhuoyu Yang ◽  
Zhe Liu ◽  
Yanyan Du

Abstract Background: The northeastern part of the Qinghai-Tibet Plateau (QTP) presents a high number of plateau loach species. As one of the three major groups of fishes distributed on the QTP, plateau loach has high ecological value. However, the taxonomy and systematics of these fish are still controversial, and a large number of new species have been reported. The reason for this phenomenon is that the degree of morphological variation is low, the phylogenetic information provided by morphological and anatomical features used for species identification is relatively poor, and many cryptic species are observed. Based on the high-density sampling points from the biodiversity hotspots surveyed, this study aims to evaluate the biodiversity of plateau loach in the northeastern part of the QTP and reveal the hidden diversity by comparing morphological species with molecular operational taxonomic units (MOTUs). Results: After careful identification and comparison of the morphology and DNA barcoding of 1,630 specimens, 22 species were identified, with 20 considered valid local species and two identified as new species that had not been previously described. Based on the combination of morphological and molecular methods, a total of 24 native species were found, two of which were cryptic species: Triplophysa robusta sp1 and Triplophysa minxianensis sp1. Fourteen of the 24 species form clusters of barcodes that allow them to be reliably identified. The remaining cases involved 10 closely related species, including rapidly differentiated species and species that seemed to have experienced incomplete lineage sorting or showed introgressions.Conclusions: The results highlight the need to combine traditional taxonomies with molecular methods to correctly identify species, especially closely related species, such as the plateau loach. This study provides a basis for protecting the biodiversity of plateau loach.


2003 ◽  
Vol 60 (12) ◽  
pp. 1552-1574 ◽  
Author(s):  
Charles R Bronte ◽  
Mark P Ebener ◽  
Donald R Schreiner ◽  
David S DeVault ◽  
Michael M Petzold ◽  
...  

Changes in Lake Superior's fish community are reviewed from 1970 to 2000. Lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) stocks have increased substantially and may be approaching ancestral states. Lake herring (Coregonus artedi) have also recovered, but under sporadic recruitment. Contaminant levels have declined and are in equilibrium with inputs, but toxaphene levels are higher than in all other Great Lakes. Sea lamprey (Petromyzon marinus) control, harvest limits, and stocking fostered recoveries of lake trout and allowed establishment of small nonnative salmonine populations. Natural reproduction supports most salmonine populations, therefore further stocking is not required. Nonnative salmonines will likely remain minor components of the fish community. Forage biomass has shifted from exotic rainbow smelt (Osmerus mordax) to native species, and high predation may prevent their recovery. Introductions of exotics have increased and threaten the recovering fish community. Agencies have little influence on the abundance of forage fish or the major predator, siscowet lake trout, and must now focus on habitat protection and enhancement in nearshore areas and prevent additional species introductions to further restoration. Persistence of Lake Superior's native deepwater species is in contrast to other Great Lakes where restoration will be difficult in the absence of these ecologically important fishes.


Genome ◽  
2006 ◽  
Vol 49 (7) ◽  
pp. 851-854 ◽  
Author(s):  
Mehrdad Hajibabaei ◽  
Gregory AC Singer ◽  
Donal A Hickey

DNA barcoding has been recently promoted as a method for both assigning specimens to known species and for discovering new and cryptic species. Here we test both the potential and the limitations of DNA barcodes by analysing a group of well-studied organisms—the primates. Our results show that DNA barcodes provide enough information to efficiently identify and delineate primate species, but that they cannot reliably uncover many of the deeper phylogenetic relationships. Our conclusion is that these short DNA sequences do not contain enough information to build reliable molecular phylogenies or define new species, but that they can provide efficient sequence tags for assigning unknown specimens to known species. As such, DNA barcoding provides enormous potential for use in global biodiversity studies.Key words: DNA barcoding, species identification, primate, biodiversity.


Sign in / Sign up

Export Citation Format

Share Document