Reverse engineering of machine-tool settings with modified roll for spiral bevel pinions

2013 ◽  
Vol 26 (3) ◽  
pp. 573-584 ◽  
Author(s):  
Guanglei Liu ◽  
Kai Chang ◽  
Zeliang Liu
2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Vilmos V. Simon

The method for loaded tooth contact analysis is applied for the investigation of the combined influence of machine-tool settings for pinion teeth finishing and misalignments of the mating members on load distribution and transmission errors in mismatched spiral bevel gears. By using the corresponding computer program, the influence of pinion’s offset and axial adjustment error, angular position error of the pinion axis, tooth spacing error, and machine-tool setting correction for pinion teeth finishing, on tooth contact pressure, tooth root stresses, and angular displacement of the driven gear member from the theoretically exact position based on the ratio of the numbers of teeth is investigated. On the basis of the obtained results, the optimal combination of machine-tool settings is determined. By the use of this set of machine-tool settings, the maximum tooth contact pressure and transmission errors can be significantly reduced. However, in some cases, by the use of appropriate machine-tool settings for the reduction of tooth contact pressure, the angular displacement of the driven gear increases. Therefore, different optimized combinations of machine-tool settings for pinion tooth finishing for the reduction of the sensitivity of gears to misalignments in regard to maximum tooth contact pressure and transmission errors should be applied. By the use of the combination of machine-tool settings to reduce the sensitivity of gears to misalignments in regard to transmission errors, a slight reduction of maximal tooth contact pressure is achieved, too.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Qi Fan

Face-hobbing is a continuous generating process employed in manufacturing spiral bevel and hypoid gears. Due to machining dynamics and tolerances of machine tools, the exact tooth surface geometry may not be obtained from the machining process using theoretical machine tool settings. Repeatable tooth surface geometric errors may be observed. The tooth surface errors will cause unfavorable displacement of tooth contact and increased transmission errors, resulting in noisy operation and premature failure due to edge contact and highly concentrated stresses. In order to eliminate the tooth surface errors and ensure precision products, a corrective machine setting technique is employed to modify the theoretical machine tool settings, compensating for the surface errors. This paper describes a method of correcting tooth surface errors for spiral bevel and hypoid gears generated by the face-hobbing process using computer numerically controlled hypoid gear generators. Polynomial representation of the universal motions of machine tool settings is considered. The corrective universal motion coefficients are determined through an optimization process with the target of minimization of the tooth surface errors. The sensitivity of the changes of the tooth surface geometry to the changes of universal motion coefficients is investigated. A numerical example of a face-hobbed hypoid pinion is presented.


Author(s):  
Zhen-yu Zhou ◽  
Jin-yuan Tang ◽  
Han Ding

Universal machine tool settings with higher-order motion coefficients are developed to make accurate modification considering the actual machine geometric error compensation for spiral bevel and hypoid gears. First, the universal machine tool settings are exploited for the identification of the real tooth flank form error. Furthermore, the error sensitivity analysis method and an improved Levenberg–Marquardt algorithm with a trust-region strategy are utilized to obtain the solution of modification amount. Finally, a higher-order modification methodology for the universal machine tool settings is proposed which mainly covers three vital parts: (a) optimized selection of the modification settings, (b) modification of universal machine tool settings, and (c) machine geometric error compensation. Especially, a higher-accuracy fitting method for the form error tooth flank is investigated. Some numerical examples verify that the tooth flank form error after higher-order modification can reach less than 0.5 µm or even a smaller one, and the position error after compensating process spindle can be reduced from 0.0044861° to 0.0009232°. In addition, given experimental result can validate the feasibility of the proposed methodology.


2011 ◽  
Vol 490 ◽  
pp. 237-246 ◽  
Author(s):  
Jadwiga Pisula ◽  
Mieczysław Płocica

In the paper it was presented a mathematical model of tooth generating of spiral bevel pinion and gear. Geometry as well as kinematic functions of the 116 machine tool were defined and mathematical model of the technological gear was built, which allows for the simulation of tooth generating.


Sign in / Sign up

Export Citation Format

Share Document