STUDY ON NONLINEAR DYNAMIC BEHAVIOR OF PLANETARY GEAR TRAIN SOLUTION AND DYNAMIC BEHAVIOR ANALYSIS

2002 ◽  
Vol 38 (03) ◽  
pp. 11 ◽  
Author(s):  
Tao Sun
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Zengbao Zhu ◽  
Longchao Cheng ◽  
Rui Xu ◽  
Rupeng Zhu

A multifreedom tensional nonlinear dynamic equation of encased differential planetary gear train with multibacklash and time-varying mesh stiffness was developed in the present research. The nonlinear dynamic response was obtained by solving the formulated nonlinear dynamic equation, and the impacts of backlash on dynamic characteristics of the gear train were then analyzed by combining time process diagram, phase diagram, and Poincaré section. The results revealed that bilateral shock in meshing teeth was caused due to smaller backlash, thus causing dramatic changes in meshing force; hence, the gears were found to be in a chaotic state. Further, during stable motion state, no contact between intermeshing teeth with bigger backlash was noticed; thus, they were in a stable quasiperiodic motion state in the absence of teeth exciting force. Therefore, in order to avoid a bilateral shock in gears as well as to maintain gear teeth lubrication, a slightly bigger backlash is required. The backlash change in any transmission stage caused significant impacts on gear force and the motion state of its own stage; however, the impact on gear force of another stage was quite small, whereas the impact on the motion state of another stage was quite large.


1994 ◽  
Vol 116 (3) ◽  
pp. 713-720 ◽  
Author(s):  
A. Kahraman

A model to simulate the dynamic behavior of a single-stage planetary gear train with helical gears is developed. The three-dimensional dynamic model includes all six rigid body motions of the gears and the carrier. The generic nature of the formulation allows the analysis of a planetary gear set with any number of planets. Planets can be arbitrarily spaced (equally or unequally) around the sun gear. The model is also capable of handling different planet meshing conditions which are functions of number of gear teeth and planet positions. The linear time-invariant equations of motion are solved to obtain the natural modes and the forced vibration response due to static transmission errors. The proposed model is employed to describe the effects of the planet mesh phasing conditions on the dynamic behavior of a four-planet system.


Sign in / Sign up

Export Citation Format

Share Document