Numerical and experimental investigation on nonlinear dynamic characteristics of planetary gear train

2020 ◽  
Vol 58 (4) ◽  
pp. 1009-1022
Author(s):  
Jianwu Zhang ◽  
Han Guo ◽  
Haisheng Yu ◽  
Tong Zhang
2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Hui Liu ◽  
Pengfei Yan ◽  
Pu Gao

Abstract The thermal deformation of gears will affect the vibration of the planetary system; this research mainly studied the effect of thermal conditions on planetary systems nonlinear vibration under the thermal equilibrium state. To study the influence of gear temperature on the planetary gear system, a nonlinear dynamic model considering thermal deformation was established. The mathematical expression of the thermal time-varying mesh stiffness (TTVMS) varied with temperature, and the backlash caused by the temperature change was also computed. The influence of temperature on the TTVMS was investigated. The calculation results indicated that the methods used to determine the TTVMS and backlash of gear pairs were effective, and the trends of the change in the nonlinear dynamic characteristics with temperature were obtained. According to the fast Fourier transform (FFT) spectrums and root-mean-square (RMS) analysis, the influence of temperature change on the nonlinear dynamic characteristics of the system was analyzed. When the temperature was lower than 80 °C, the vibration displacement and the supporting shaft load remained unchanged or decreased. Once the temperature was higher than 80 °C, the vibration displacement and load of the system were strengthened.


Author(s):  
Jingyue Wang ◽  
Ning Liu ◽  
Haotian Wang ◽  
Lixin Guo

Based on the planetary gear transmission system considering the coupling effects of friction and elastohydrodynamic lubrication, a torsional dynamic model considering friction, oil film, time-varying meshing stiffness, meshing damping, and gear backlash is established. The Runge–Kutta numerical method is used to solve the vibration equation of the system. The bifurcation diagram and largest Lyapunov exponent are used to analyze the dynamic characteristics of the system under different bifurcation parameters such as the excitation frequency, lubricant viscosity, sun–planet backlash, and planet–ring backlash. The numerical results demonstrate that with the increase of excitation frequency, the system exhibits rich nonlinear dynamic characteristics such as short-period motion, long-period motion, and chaotic motion. With the increase of lubricant viscosity, the chaotic motion of the system is suppressed at low excitation frequency and the periodic motion of the system increases at high excitation frequency. With the increase of sun–planet backlash, the chaotic motion of the system increases at low excitation frequency, and the bifurcation characteristics become complicated at high excitation frequency and enters chaotic motion in advance. With the increase of ring–planet backlash, the system delays into chaotic motion at low excitation frequency and bifurcates from single-period motion to multi-period motion in advance at high excitation frequency.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Zengbao Zhu ◽  
Longchao Cheng ◽  
Rui Xu ◽  
Rupeng Zhu

A multifreedom tensional nonlinear dynamic equation of encased differential planetary gear train with multibacklash and time-varying mesh stiffness was developed in the present research. The nonlinear dynamic response was obtained by solving the formulated nonlinear dynamic equation, and the impacts of backlash on dynamic characteristics of the gear train were then analyzed by combining time process diagram, phase diagram, and Poincaré section. The results revealed that bilateral shock in meshing teeth was caused due to smaller backlash, thus causing dramatic changes in meshing force; hence, the gears were found to be in a chaotic state. Further, during stable motion state, no contact between intermeshing teeth with bigger backlash was noticed; thus, they were in a stable quasiperiodic motion state in the absence of teeth exciting force. Therefore, in order to avoid a bilateral shock in gears as well as to maintain gear teeth lubrication, a slightly bigger backlash is required. The backlash change in any transmission stage caused significant impacts on gear force and the motion state of its own stage; however, the impact on gear force of another stage was quite small, whereas the impact on the motion state of another stage was quite large.


Sign in / Sign up

Export Citation Format

Share Document