scholarly journals Numerical Simulation and Experiment of Single Track Scanning and Lapping in Selective Laser Melting

2020 ◽  
Vol 56 (22) ◽  
pp. 56
Author(s):  
LIANG Pinghua ◽  
TANG Qian ◽  
FENG Qixiang ◽  
SONG Jun
2018 ◽  
Vol 24 (9) ◽  
pp. 1554-1562 ◽  
Author(s):  
Luo Zhang ◽  
Haihong Zhu ◽  
Jiahe Liu ◽  
Xiaoyan Zeng

Purpose The purpose of this paper is to investigate the track evolution and surface characteristics of selective laser melting Ti6Al4V. Design/methodology/approach In the present paper, Ti6Al4V single-track, multi-track and bulk sample were formed at different scanning speed by selective laser melting (SLM). Then, the surface morphology, three-dimension profile and surface roughness were evaluated. The width of the single and multi-track was measured and compared. Findings The results showed that the heat accumulation played a great role on the evolution of tracks and surface characteristics from single-track to multi-track and to bulk. The surface morphology of the subsequent tracks became more regular when the single-track was irregular at the same high scanning speed. The width of last track Wn was always larger than that of the first track W1. The Ra of the top of the bulk increased with the increase of the scanning speed, this trend was as same as the Ra of the single-track, but the trend of Ra of the side was opposite. Originality/value The effect of heat accumulation on the track evolution and surface characteristics is obtained. The results can help to derive a smooth surface with a regular and continuous track in SLM.


2018 ◽  
Vol 124 (10) ◽  
Author(s):  
Yu Xiang ◽  
Shuzhe Zhang ◽  
Zhengying Wei ◽  
Junfeng Li ◽  
Pei Wei ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3895 ◽  
Author(s):  
Abbas Razavykia ◽  
Eugenio Brusa ◽  
Cristiana Delprete ◽  
Reza Yavari

Additive Manufacturing (AM) processes enable their deployment in broad applications from aerospace to art, design, and architecture. Part quality and performance are the main concerns during AM processes execution that the achievement of adequate characteristics can be guaranteed, considering a wide range of influencing factors, such as process parameters, material, environment, measurement, and operators training. Investigating the effects of not only the influential AM processes variables but also their interactions and coupled impacts are essential to process optimization which requires huge efforts to be made. Therefore, numerical simulation can be an effective tool that facilities the evaluation of the AM processes principles. Selective Laser Melting (SLM) is a widespread Powder Bed Fusion (PBF) AM process that due to its superior advantages, such as capability to print complex and highly customized components, which leads to an increasing attention paid by industries and academia. Temperature distribution and melt pool dynamics have paramount importance to be well simulated and correlated by part quality in terms of surface finish, induced residual stress and microstructure evolution during SLM. Summarizing numerical simulations of SLM in this survey is pointed out as one important research perspective as well as exploring the contribution of adopted approaches and practices. This review survey has been organized to give an overview of AM processes such as extrusion, photopolymerization, material jetting, laminated object manufacturing, and powder bed fusion. And in particular is targeted to discuss the conducted numerical simulation of SLM to illustrate a uniform picture of existing nonproprietary approaches to predict the heat transfer, melt pool behavior, microstructure and residual stresses analysis.


Sign in / Sign up

Export Citation Format

Share Document