scholarly journals Influence of Car Body-suspended Equipment on the Ride Comfort of High-speed Railway Vehicles

2020 ◽  
Vol 56 (22) ◽  
pp. 227
Author(s):  
GUO Jinying ◽  
SHI Huailong ◽  
WU Pingbo ◽  
WANG Jing
2019 ◽  
Vol 39 (4) ◽  
pp. 925-938 ◽  
Author(s):  
Dao Gong ◽  
Kang Wang ◽  
Yu Duan ◽  
Jinsong Zhou

An on-site test has been performed to address the problem of feet numbness caused by the floor vibration of high-speed railway vehicles. Analysis of the floor vibration performance indicates that the vibration of the car body chassis transmitted to the floor by the elastic supports is significantly amplified in the frequency range of 20–50 Hz. This overlaps with the frequency range in which human lower extremities are most sensitive, leading to feet numbness. A refined finite element model of the car body, including the floor panels is developed to further study the vibration mechanism of the floor. Results show that due to the inappropriate design of the elastic support stiffness, the deformations of the floor above the bogie centre for several typical modes in the frequency range of 20–50 Hz are significantly amplified. When the excitation frequencies transmitted from the car body chassis were close to the eigenfrequencies of the floor, the local resonance of the floor will occur, which is the root cause of human feet numbness. The dynamic stiffness of the elastic support is further optimised, and the experimental verification shows that the vibration transmissibility from the car body chassis to the floor in the frequency range of 20–50 Hz has been significantly reduced, and the problem of feet numbness has been solved.


Cryogenics ◽  
2021 ◽  
pp. 103321
Author(s):  
Yuhang Yuan ◽  
Jipeng Li ◽  
Zigang Deng ◽  
Zhehao Liu ◽  
Dingding Wu ◽  
...  

2021 ◽  
Vol 65 (192) ◽  
pp. 195-202
Author(s):  
Andrzej Zbieć

In the series of articles describing the aerodynamic phenomena caused by the passage of a train, the effects of a train running at high speed on itself, on other trains, on objects on the track and on people are characterized. This impact can be of two types – generated pressure and slipstream. Apart from the literature analysis, the author’s research is also taken into account. The second part presents the effect of pressure changes on the front and side surfaces of passing trains. Conclusions concerning side windows and windscreens in high-speed railway vehicles and older type railway vehicles with lower allowable speeds and the possibility of using various rolling stock on the same lines are presented. Keywords: rolling stock, high-speed railways, aerodynamic phenomena


Author(s):  
Jie-Ling Xiao ◽  
Pu Jing ◽  
Si-Xin Yu ◽  
Ping Wang

Polyurethane-reinforced ballasted track (PRBT) can improve the integrity of ballasted track structures and satisfy the high-stability requirements of high-speed railways. In this study, the quality evolution law of PRBT structures after being launched into train service was analyzed, and a reference for structural optimization and maintenance operation was provided. The track geometric state of the PRBT test section of a high-speed railway was measured and monitored for nearly one year after it was launched into operation, and the ballastless track of the adjacent section was selected as a reference. The geometric states of the tracks were evaluated and compared using various parameters, including sliding standard deviation, average standard deviation, and track irregularity spectrum density. Results show that the track quality indexes of the test section, which were in operation for nearly one year, were slightly over the limit. Moreover, the fastener can be finely adjusted for the high-value index sections to further improve the ride comfort. The application effect of PRBT in the subgrade fracture zone was good, which could satisfy the requirements of high-quality transportation as well as the normal operation and maintenance of high-speed railway.


1975 ◽  
Vol 97 (3) ◽  
pp. 293-299 ◽  
Author(s):  
N. K. Cooperrider ◽  
J. J. Cox ◽  
J. K. Hedrick

The attempt to develop a railway vehicle that can operate in the 150 to 300-mph(240 to 480-km/h) speed regime is seriously hampered by the problems of ride comfort, curve negotiation, and “hunting.” This latter phenomena involves sustained lateral oscillations that occur above certain critical forward velocities and cause large dynamic loads between the wheels and track as well as contributing to passenger discomfort. This paper presents results of an initial effort to solve these problems by utilizing optimization procedures to design a high speed railway vehicle. This study indicates that the problem is more easily treated as a constrained optimization problem than as an unconstrained problem with several terms in the objective function. In the constrained optimization problem, the critical “hunting” speed was maximized subject to constraints on 1) the acceleration of the car body, 2) the suspension stroke length, and 3) the maximum suspension stroke while negotiating a curve. A simple, three degree-of-freedom model of the rail vehicle was used for this study. Solutions of this constrained problem show that beyond a minimum yaw stiffness between truck and car body the operating speed remains nearly constant. Thus, above this value, the designer may trade off yaw stiffness, wheel tread conicity and stability margin.


Sign in / Sign up

Export Citation Format

Share Document