scholarly journals Ex situ conservation of Dianthus giganteus d’Urv. subsp. banaticus (Heuff.) Tutin by in vitro culture and assessment of somaclonal variability by molecular markers

2014 ◽  
Vol 38 ◽  
pp. 21-30 ◽  
Author(s):  
Liliana JARDA ◽  
Anca BUTIUC-KEUL ◽  
Maria HÖHN ◽  
Andrzej PEDRYC ◽  
Victoria CRISTEA
2019 ◽  
Vol 138 (3) ◽  
pp. 427-435 ◽  
Author(s):  
Manuel Ayuso ◽  
Pascual García-Pérez ◽  
Pablo Ramil-Rego ◽  
Pedro Pablo Gallego ◽  
M. Esther Barreal

2015 ◽  
pp. 83-98
Author(s):  
Marija Markovic ◽  
Mihailo Grbic ◽  
Matilda Djukic

The review of recent researches regarding the in vitro culture of 30 endangered Dianthus taxa is presented in this paper. Various in vitro protocols developed for selected rare and threatened Dianthus taxa are analysed in order to provide a useful synthesis of the data obtained with the main principles, techniques and recommendations for futher research and practice. The recapitulated data presented in this review can be used as a tool for the micropropagation of other endangered Dianthus taxa, enabling their propagation and obtaining a sufficient amount of plants for reintroduction. In addition, the obtained results represent the basis for ex situ conservation of the investigated taxa, especially for medium-term and long-term conservation (cryopreservation).


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 934
Author(s):  
Chris O’Brien ◽  
Jayeni Hiti-Bandaralage ◽  
Raquel Folgado ◽  
Alice Hayward ◽  
Sean Lahmeyer ◽  
...  

Recent development and implementation of crop cryopreservation protocols has increased the capacity to maintain recalcitrant seeded germplasm collections via cryopreserved in vitro material. To preserve the greatest possible plant genetic resources globally for future food security and breeding programs, it is essential to integrate in situ and ex situ conservation methods into a cohesive conservation plan. In vitro storage using tissue culture and cryopreservation techniques offers promising complementary tools that can be used to promote this approach. These techniques can be employed for crops difficult or impossible to maintain in seed banks for long-term conservation. This includes woody perennial plants, recalcitrant seed crops or crops with no seeds at all and vegetatively or clonally propagated crops where seeds are not true-to-type. Many of the world’s most important crops for food, nutrition and livelihoods, are vegetatively propagated or have recalcitrant seeds. This review will look at ex situ conservation, namely field repositories and in vitro storage for some of these economically important crops, focusing on conservation strategies for avocado. To date, cultivar-specific multiplication protocols have been established for maintaining multiple avocado cultivars in tissue culture. Cryopreservation of avocado somatic embryos and somatic embryogenesis have been successful. In addition, a shoot-tip cryopreservation protocol has been developed for cryo-storage and regeneration of true-to-type clonal avocado plants.


Genetika ◽  
2004 ◽  
Vol 36 (3) ◽  
pp. 221-227
Author(s):  
Jelena Aleksic ◽  
Sasa Orlovic

Principles of the conservation of genetic resources of elms (Ulmus spp) do not differ fundamentally from the general principles accepted for the conservation of genetic resources of other common Noble Hardwoods. Efficient conservation can best be achieved through appropriate combination of in situ and ex situ methods, which have distinct advantages. Besides that, ex situ conservation is employed when emergency measures are needed for rare endangered populations and when populations are too small to be managed in situ (e.g. risks of genetic drift and inbreeding). The aim of our research is ex situ conservation of genetic resources of field elm {Ulmus minor Mill) and European white elm (Ulmus laevis Pall) through establishment of field genebanks. Sampling was conducted in one population of field elm and one population of white elm. Plant material (buds) from 8 trees of field elm and 10 trees of white elm was used for in vitro production of clones. Obtained clones will be used for establishment of field genebanks on the experimental estate of the Institute of Lowland Forestry and Environment.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
Hazubska-Przybył

The genus Juniperus (of the Cupressaceae family) is the second most prevalent group of conifers on Earth. Juniper species are widely dispersed in the Northern Hemisphere, in Europe and Asia, and in Africa and Central America. Juniper species are resistant to dry climates and can adapt to difficult environmental conditions. Most juniper species are important in both ecological and economic terms. However, today, many forests in which junipers occur are being reduced in size due to both natural causes (fires, for example) and human activity (uncontrolled exploitation of forests, etc.). Also, climate changes may have adversely affected the range of populations of different juniper species. For this reason, some juniper species are now categorized as rare or endangered, and require immediate protective action. Therefore, there is an urgent need to develop effective strategies for ex situ conservation, including reliable procedures for Juniperus sp. reproduction for future reintroduction and restoration programs. The conservation strategies used until now with traditional forestry techniques (seed propagation, rooted cuttings, grafting) have not been satisfactory in many cases. Thus, increasing attention is being paid to the possibilities offered by in vitro culture technology, which enables the conservation and mass clonal propagation of different coniferous tree species. In this mini-review, we summarize the current state of knowledge regarding the use of various methods of the propagation of selected Juniperus species, with a particular emphasis on in vitro culture techniques.


2011 ◽  
Vol 107 (3) ◽  
pp. 531-540 ◽  
Author(s):  
Katerina Grigoriadou ◽  
Nikos Krigas ◽  
Eleni Maloupa

Manglar ◽  
2021 ◽  
Vol 18 (4) ◽  
pp. 427-433
Author(s):  
Héctor Javier Sánchez-Sotomayor ◽  
Alfonso Orellana-García ◽  
Indira Aurora Roel Barahona ◽  
Manuel Marín Bravo ◽  
Gilmar Peña Rojas ◽  
...  

2013 ◽  
Vol 41 (1) ◽  
pp. 73 ◽  
Author(s):  
Victoria CRISTEA ◽  
Liliana JARDA ◽  
Irina HOLOBIUC

Within the current context of declining biodiversity, the botanical gardens play an essential role in its conservation. Dianthus callizonus, D. glacialis ssp. gelidus and D. spiculifolius are the species that we seek to preserve in "Alexandru Borza" Botanical Garden of Cluj-Napoca (Romania). Several replicates were collected for each taxon from different populations in order to avoid the genetic uniformity. The material collected from the natural sites, was planted on a rockery, specially designed for this collection in the Botanical Garden. At the time of planting, each individual was sampled for setting up an in vitro collection and further biochemical and molecular analyses. In case of ex situ outdoor conservation of the three Dianthus species, 80.6% of the individuals collected in the field survived during the first year but the percentage decreased drastically after four years. In the case of in situ collected individuals, as well as in the case of in vitro individuals, D. spiculifolius had the best ability to acclimatize in the Botanical Garden, and D. callizonus presented the lowest number of surviving individuals. The ex vitro acclimatization of the plantlets had 80% efficiency at 10ºC, using three different substrates: soil and pearl stone mix 1/1, soil and sand mix 1/1 and pearl stone. All the three species are preserved in vitro, whereas the plantlets are acclimatized outdoors. Ex situ conservation of these species will have a positive impact on the biodiversity conservation.


Sign in / Sign up

Export Citation Format

Share Document