scholarly journals Cryopreservation of Woody Crops: The Avocado Case

Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 934
Author(s):  
Chris O’Brien ◽  
Jayeni Hiti-Bandaralage ◽  
Raquel Folgado ◽  
Alice Hayward ◽  
Sean Lahmeyer ◽  
...  

Recent development and implementation of crop cryopreservation protocols has increased the capacity to maintain recalcitrant seeded germplasm collections via cryopreserved in vitro material. To preserve the greatest possible plant genetic resources globally for future food security and breeding programs, it is essential to integrate in situ and ex situ conservation methods into a cohesive conservation plan. In vitro storage using tissue culture and cryopreservation techniques offers promising complementary tools that can be used to promote this approach. These techniques can be employed for crops difficult or impossible to maintain in seed banks for long-term conservation. This includes woody perennial plants, recalcitrant seed crops or crops with no seeds at all and vegetatively or clonally propagated crops where seeds are not true-to-type. Many of the world’s most important crops for food, nutrition and livelihoods, are vegetatively propagated or have recalcitrant seeds. This review will look at ex situ conservation, namely field repositories and in vitro storage for some of these economically important crops, focusing on conservation strategies for avocado. To date, cultivar-specific multiplication protocols have been established for maintaining multiple avocado cultivars in tissue culture. Cryopreservation of avocado somatic embryos and somatic embryogenesis have been successful. In addition, a shoot-tip cryopreservation protocol has been developed for cryo-storage and regeneration of true-to-type clonal avocado plants.

2019 ◽  
Vol 67 (1) ◽  
pp. 1 ◽  
Author(s):  
Robyn Streczynski ◽  
Hamish Clark ◽  
Lily M. Whelehan ◽  
Sze-Tieng Ang ◽  
Lyndle K. Hardstaff ◽  
...  

An alarming proportion of Australia’s unique plant biodiversity is under siege from a variety of environmental threats. Options for in situ conservation are becoming increasingly compromised as encroaching land use, climate change and introduced diseases are highly likely to erode sanctuaries regardless of best intentions. Ex situ conservation is currently limited to botanic garden living collections and seed banking, with in vitro and cryopreservation technologies still being developed to address ex situ conservation of species not amenable to conventional storage. Cryopreservation (storage in liquid nitrogen) has been used successfully for long-term biosecure storage of shoot tips of several species of threatened Australian plants. We present a case for building on this research and fostering further development and utilisation of cryopreservation as the best means of capturing critical germplasm collections of Australian species with special storage requirements (e.g. recalcitrant-seeded taxa and species with short-lived seeds) that currently cannot be preserved effectively by other means. This review highlights the major issues in cryopreservation that can limit survival including ice crystal damage and desiccation, toxicity of cryoprotective agents, membrane damage, oxidative stress and mitochondrial function. Progress in understanding and mitigating these stresses is vital for advancing cryopreservation for conservation purposes.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
JS Sung ◽  
CW Jeong ◽  
YY Lee ◽  
HS Lee ◽  
YA Jeon ◽  
...  

2012 ◽  
Vol 10 (3) ◽  
pp. 242-253 ◽  
Author(s):  
Holly Vincent ◽  
Roland von Bothmer ◽  
Helmut Knüpffer ◽  
Ahmed Amri ◽  
Jan Konopka ◽  
...  

To facilitate the updating ofin situandex situconservation strategies for wild taxa of the genusHordeumL., a combined ecogeographic survey and gap analysis was undertaken. The analysis was based on the Global Inventory of Barley Plant Genetic Resources held by ICARDA plus additional datasets, resulting in a database containing 17,131 wildHordeumaccessions. The analysis concluded that a genetic reserve should be established in the Mendoza Province of Argentina, as this is the most species-rich area globally forHordeum. A network of reserves should also be set up across the Fertile Crescent in Israel, Palestine, Syria, Jordan, Lebanon and Turkey to provide effective conservation within the centres of diversity for gene pools 1B (Hordeum vulgaresubsp.spontaneum(C. Koch) Thell.) and 2 (Hordeum bulbosumL.). The majority of the species were deemed under-collected, so further collecting missions are required worldwide where possible. Althoughex situandin situconservation strategies have been developed, there needs to be further investigation into the ecological environments thatHordeumspecies occupy to ensure that any adaptive traits expressed are fully conserved. Additionally, studies are required to characterize existing collections and test the viability of rare species accessions held in genebanks to determine whether furtherex situcollections are required alongside the proposedin situconservation.


Genetika ◽  
2004 ◽  
Vol 36 (3) ◽  
pp. 221-227
Author(s):  
Jelena Aleksic ◽  
Sasa Orlovic

Principles of the conservation of genetic resources of elms (Ulmus spp) do not differ fundamentally from the general principles accepted for the conservation of genetic resources of other common Noble Hardwoods. Efficient conservation can best be achieved through appropriate combination of in situ and ex situ methods, which have distinct advantages. Besides that, ex situ conservation is employed when emergency measures are needed for rare endangered populations and when populations are too small to be managed in situ (e.g. risks of genetic drift and inbreeding). The aim of our research is ex situ conservation of genetic resources of field elm {Ulmus minor Mill) and European white elm (Ulmus laevis Pall) through establishment of field genebanks. Sampling was conducted in one population of field elm and one population of white elm. Plant material (buds) from 8 trees of field elm and 10 trees of white elm was used for in vitro production of clones. Obtained clones will be used for establishment of field genebanks on the experimental estate of the Institute of Lowland Forestry and Environment.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7017 ◽  
Author(s):  
Alejandra Hernández-Terán ◽  
Ana Wegier ◽  
Mariana Benítez ◽  
Rafael Lira ◽  
Tania Gabriela Sosa Fuentes ◽  
...  

One of the best ex situ conservation strategies for wild germplasm is in vitro conservation of genetic banks. The success of in vitro conservation relies heavily on the micropropagation or performance of the species of interest. In the context of global change, crop production challenges and climate change, we face a reality of intensified crop production strategies, including genetic engineering, which can negatively impact biodiversity conservation. However, the possible consequences of transgene presence for the in vitro performance of populations and its implications for biodiversity conservation are poorly documented. In this study we analyzed experimental evidence of the potential effects of transgene presence on the in vitro performance of Gossypium hirsutum L. populations, representing the Mexican genetic diversity of the species, and reflect on the implications of such presence for ex situ genetic conservation of the natural variation of the species. We followed an experimental in vitro performance approach, in which we included individuals from different wild cotton populations as well as individuals from domesticated populations, in order to differentiate the effects of domestication traits dragged into the wild germplasm pool via gene flow from the effects of transgene presence. We evaluated the in vitro performance of five traits related to plant establishment (N = 300): propagation rate, leaf production rate, height increase rate, microbial growth and root development. Then we conducted statistical tests (PERMANOVA, Wilcoxon post-hoc tests, and NMDS multivariate analyses) to evaluate the differences in the in vitro performance of the studied populations. Although direct causality of the transgenes to observed phenotypes requires strict control of genotypes, the overall results suggest detrimental consequences for the in vitro culture performance of wild cotton populations in the presence of transgenes. This provides experimental, statistically sound evidence to support the implementation of transgene screening of plants to reduce time and economic costs in in vitro establishment, thus contributing to the overarching goal of germplasm conservation for future adaptation.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1861
Author(s):  
Yanelis Castilla Valdés ◽  
Mukund R. Shukla ◽  
María Esther González Vega ◽  
Praveen K. Saxena

Coffee (Coffea spp.) is an important tropical agricultural crop that has significant economic and social importance in the world. The ex situ conservation of plant genetic resources through seeds is not feasible due to the sensitivity of coffee seed to desiccation and low temperatures. The cryopreservation of zygotic embryos may allow for an efficient and long-term storage of coffee germplasm. This study describes the cryopreservation methods for conserving zygotic embryos of Coffea arabica L. for the long-term conservation of currently available germplasm. Zygotic embryos were successfully cryopreserved in liquid nitrogen at −196 °C under controlled environmental conditions with either droplet-vitrification or encapsulation–vitrification protocols without dehydration. Zygotic embryos had the highest regrowth (100%) following droplet-vitrification cryopreservation using the Plant Vitrification Solution 3 (PVS3) for 40 min at 23 °C. In the case of encapsulation–vitrification using PVS3 for 40 min at 23 °C, the embryo regeneration response was 78%. Plantlets were recovered following shoot multiplication using a temporary immersion system (TIS) and in vitro rooting. The prolific rooting of shoots was observed after 4 weeks of culture in the liquid medium with plugs made of the inert substrate Oasis® In vitro Express (IVE) compared to the semi-solid medium. The successful cryopreservation of coffee zygotic embryos using droplet vitrification and encapsulation–vitrification followed by micropropagation in temporary immersion culture system has not been reported earlier and together these technologies are anticipated to further facilitate the initiatives for the conservation and distribution of coffee germplasm.


2020 ◽  
Vol 21 (20) ◽  
pp. 7459
Author(s):  
María Elena González-Benito ◽  
Miguel Ángel Ibáñez ◽  
Michela Pirredda ◽  
Sara Mira ◽  
Carmen Martín

Epigenetic variation, and particularly DNA methylation, is involved in plasticity and responses to changes in the environment. Conservation biology studies have focused on the measurement of this variation to establish demographic parameters, diversity levels and population structure to design the appropriate conservation strategies. However, in ex situ conservation approaches, the main objective is to guarantee the characteristics of the conserved material (phenotype and epi-genetic). We review the use of the Methylation Sensitive Amplified Polymorphism (MSAP) technique to detect changes in the DNA methylation patterns of plant material conserved by the main ex situ plant conservation methods: seed banks, in vitro slow growth and cryopreservation. Comparison of DNA methylation patterns before and after conservation is a useful tool to check the fidelity of the regenerated plants, and, at the same time, may be related with other genetic variations that might appear during the conservation process (i.e., somaclonal variation). Analyses of MSAP profiles can be useful in the management of ex situ plant conservation but differs in the approach used in the in situ conservation. Likewise, an easy-to-use methodology is necessary for a rapid interpretation of data, in order to be readily implemented by conservation managers.


Sign in / Sign up

Export Citation Format

Share Document