Fuzzy Fault Tree Analysis of the Marine Diesel Engine Jacket Water Cooling System

2014 ◽  
Vol 13 (3) ◽  
pp. 425-433 ◽  
Author(s):  
Nyan Win Aung ◽  
Wei Haijun ◽  
Sun Di .
2020 ◽  
Vol 8 (12) ◽  
pp. 1004
Author(s):  
Vlatko Knežević ◽  
Josip Orović ◽  
Ladislav Stazić ◽  
Jelena Čulin

The reliability of marine propulsion systems depends on the reliability of several sub-systems of a diesel engine. The scavenge air system is one of the crucial sub-systems of the marine engine with a turbocharger as an essential component. In this paper, the failures of a turbocharger are analyzed through the fault tree analysis (FTA) method to estimate the reliability of the system and to predict the cause of failures. The quantitative method is used for assessing the probability of faults occurring in the turbocharger system. The main failures of a scavenge air sub-system, such as air filter blockage, compressor fouling, turbine fouling (exhaust side), cooler tube blockage and cooler air side blockage, are simulated on a Wärtsilä-Transas engine simulator for a marine two-stroke diesel engine. The results obtained through the simulation can provide improvement in the maintenance plan, reliability of the propulsion system and optimization of turbocharger operation during exploitation time.


2018 ◽  
Vol 35 (5) ◽  
pp. 1115-1141 ◽  
Author(s):  
Mina Moeinedini ◽  
Sadigh Raissi ◽  
Kaveh Khalili-Damghani

Purpose Enterprise resource planning (ERP) is assumed as a commonly used solution in order to provide an integrated view of core business processes, including product planning, manufacturing cost, delivery, marketing, sales, inventory management, shipping and payment. Selection and implementation of a suitable ERP solution are not assumed a trivial project because of the challenging nature of it, high costs, long-duration of installation and customization, as well as lack of successful benchmarking experiences. During the ERP projects, several risk factors threat the successful implementation of the project. These risk factors usually refer to different phases of the ERP projects including purchasing, pilot implementation, teaching, install, synchronizing, and movement from old systems toward new ones, initiation and utilization. These risk factors have dominant effects on each other. The purpose of this paper is to explore the hybrid reliability-based method is proposed to assess the risk factors of ERP solutions. Design/methodology/approach In this regard, the most important risk factors of ERP solutions are first determined. Then, the interactive relations of these factors are recognized using a graph based method, called interpretive structural modeling. The resultant network of relations between these factors initiates a new viewpoint toward the cause and effect relations among risk factors. Afterwards, a fuzzy fault tree analysis is proposed to calculate Failure Fuzzy Possibility (FFP) for the basic events of the fault tree leading to a quantitative evaluation of risk factors. Findings The whole proposed method is applied in a well-known Iranian foodservice distributor as a case study. The most impressive risk factors are identified, classified and prioritized. Moreover, the cause and effect diagram between the risk factors are identified. So, the ERP leader can plan a low-risk project and increase the chance of success. Originality/value According to the authors’ best knowledge, such approach was not reported before in the literature of ERP risk assessments.


Sign in / Sign up

Export Citation Format

Share Document