Soil Salinity and Yield of Drip-Irrigated Potato under Different Irrigation Regimes with Saline Water in Arid Conditions of Southern Tunisia

2007 ◽  
Vol 6 (2) ◽  
pp. 324-330 ◽  
Author(s):  
Kamel Nagaz ◽  
Mohamed M. Masmoudi ◽  
Netij Ben Mechlia
ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. Nagaz ◽  
M. M. Masmoudi ◽  
N. Ben Mechlia

A two-year study was conducted in arid region of Tunisia to evaluate the effects of deficit irrigation regimes with saline water on soil salinity, yield, and water use efficiency of onion grown in a commercial farm on a sandy soil and drip-irrigated with water having an of 3.6 dS/m. Irrigation treatments consisted in water replacements of accumulated at levels of 100% (SWB-100, full irrigation), 80% (DI-80), 60% (DI-60), when the readily available water in the control treatment (SWB-100) is depleted, deficit irrigation during ripening stage (SWB100-MDI60) and farmer method corresponding to irrigation practices implemented by the local farmers. Results on onion production and soil salinization are globally coherent between the two-year experiments and show significant difference between irrigation regimes. Higher soil salinity was maintained in the root zone with DI-60 and farmer treatments than full irrigation (SWB-100). SWB100-MDI60 and DI-80 treatments resulted also in low values. No significant differences were observed in bulbs fresh and dry yields, bulbs number·ha−1 and weight from the comparison between full irrigation (SWB-100) and deficit treatments (DI-80, SWB100-MDI60). DI-60 irrigation treatment caused significant reductions in the four parameters considered in comparison with SWB-100. The farmer method caused significant reductions in yield components and resulted in increase of water usage 45 and 33% in 2008 and 2009, respectively. Water use efficiency was found to vary significantly among treatments, where the highest and the lowest values were observed for DI-60 and farmer treatments, respectively. The full irrigation (SWB-100) and deficit irrigation (DI-80 and SWB100-MDI60) strategies were found to be a useful practice for scheduling onion irrigation with saline water under the arid Mediterranean conditions of southern Tunisia.


2016 ◽  
Vol 199 ◽  
pp. 114-123 ◽  
Author(s):  
Ponnambalam Rameshwaran ◽  
Akin Tepe ◽  
Attila Yazar ◽  
Ragab Ragab

2012 ◽  
Vol 11 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Kamel Nagaz ◽  
Mohamed Moncef Masmoudi ◽  
Netij Ben Mechlia

2016 ◽  
Vol 20 (75) ◽  
pp. 171-185
Author(s):  
S. H. Tabatabaei ◽  
F. Mostashfi Habibabadi ◽  
M. Shayannejad ◽  
M. Dehgani ◽  
◽  
...  

2021 ◽  
Author(s):  
Fathia El Mokh ◽  
Kamel Nagaz ◽  
Ashok Kumar Alva ◽  
Mohamed Moncef Masmoudi ◽  
Netij Ben Mechlia

2020 ◽  
Vol 9 (1) ◽  
pp. 270-276
Author(s):  
B R Morwal ◽  
Pradeep Pagaria ◽  
Shayam Das ◽  
Vinay Kumar

Author(s):  
José T. A. Souza ◽  
Járisson C. Nunes ◽  
Lourival F. Cavalcante ◽  
Juliete A. da S. Nunes ◽  
Walter E. Pereira ◽  
...  

ABSTRACT An experiment was undertaken in Remígio County, Paraíba State, Brazil, from July 2013 to May 2014, in order to evaluate the effects of saline water irrigation, bovine biofertilizer, and potassium type on soil salinity, leaf macronutrient composition, and production of yellow passion fruit cv. BRS Gigante Amarelo. Treatments were distributed in randomized blocks, arranged in a 2 × 2 × 2 factorial design, with reference to electrical conductivity of the water (0.35 and 4.00 dS m-1), soil with and without bovine biofertilizer, and application of potassium chloride as a conventional treatment (KCl) and in an organic polymer-coated form, supplied monthly. Bovine biofertilizer was diluted in non-saline water (proportion, 50%) and applied via water at a volume of 6 L plant-1 one day before transplanting, and then every 90 days. The combination of saline water with bovine biofertilizer raised soil salinity to a similar proportion when comparing saline water and conventional potassium chloride with saline water and polymer-coated potassium chloride. The increase in water saline concentrations associated with both types of potassium chloride and with bovine biofertilizer elevated soil salinity from non-saline to saline. On starting to flower, plants of cv. BRS Gigante Amarelo were deficient in macronutrients other than nitrogen and potassium, but nonetheless produced fruits of an adequate mass for the consumer market.


Sign in / Sign up

Export Citation Format

Share Document