Optimizing Media of Lactobacillus rhamnosus for Lactic Acid Fermentation

2008 ◽  
Vol 8 (17) ◽  
pp. 3055-3059 ◽  
Author(s):  
Maizirwan Mel ◽  
Mohamad Ismail Abdul Karim ◽  
Mohamad Ramlan Moham Salleh ◽  
Noraini Alamin Moham Amin
2014 ◽  
Vol 665 ◽  
pp. 388-392
Author(s):  
Ning Li ◽  
Yu Cai Lü ◽  
Da Chun Gong

In order to investigate characteristics of Lactobacillus rhamnosus on lactic acid fermentation using different substrate, in this study, saccharification liquid obtained during wet oxidation blasting of straw were used as substrate, conversion reducing sugar to lactate by Lactobacillus rhamnosus was studied and compared with fermentation using glucose as substrate, The results indicated that Lactobacillus rhamnosus could utilize reducing sugar in saccharification liquid obtained during wet oxidation blasting of straw effectively. The highest efficiency of reducing sugar conversion (92.45%) appeared when concentration of reducing sugar as substrate was 20mg/mL; conversion rate of reducing sugar decreased as increasing of sugar concentration. Fermentation of saccharification liquid obtained during wet oxidation blasting of straw to lactic acid by Lactobacillus rhamnosus had optimal effects in the first 48h of incubation.


2019 ◽  
Vol 7 (4) ◽  
pp. 365-372
Author(s):  
Ja-Ryong Koo ◽  
Hye Min Park ◽  
Se Kyung Kim ◽  
Hyun Shik Yun

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
P Lorenz ◽  
S Duckstein ◽  
J Bertrams ◽  
U Meyer ◽  
F Stintzing

LWT ◽  
2021 ◽  
pp. 111927
Author(s):  
Yuan Shi ◽  
Anika Singh ◽  
David Kitts ◽  
Anubhav Pratap-Singh

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 494 ◽  
Author(s):  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Jeongho Lee ◽  
Seunghee Kim ◽  
Chulhwan Park ◽  
...  

Biorefinery, which utilizes carbon-neutral biomass as a resource, is attracting attention as a significant alternative in a modern society confronted with climate change. In this study, spent coffee grounds (SCGs) were used as the feedstock for lactic acid fermentation. In order to improve sugar conversion, alkali pretreatment was optimized by a statistical method, namely response surface methodology (RSM). The optimum conditions for the alkali pretreatment of SCGs were determined as follows: 75 °C, 3% potassium hydroxide (KOH) and a time of 2.8 h. The optimum conditions for enzymatic hydrolysis of pretreated SCGs were determined as follows: enzyme complex loading of 30-unit cellulase, 15-unit cellobiase and 50-unit mannanase per g biomass and a reaction time of 96 h. SCG hydrolysates were used as the carbon source for Lactobacillus cultivation, and the conversions of lactic acid by L. brevis ATCC 8287 and L. parabuchneri ATCC 49374 were 40.1% and 55.8%, respectively. Finally, the maximum lactic acid production by L. parabuchneri ATCC 49374 was estimated to be 101.2 g based on 1000 g of SCGs through the optimization of alkali pretreatment and enzymatic hydrolysis.


Sign in / Sign up

Export Citation Format

Share Document