Establishment of Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor by using Seed Sludge from a Conventional Activated Sludge Wastewater Treatment Process

2010 ◽  
Vol 10 (21) ◽  
pp. 2643-2647 ◽  
Author(s):  
Y.H. Ong ◽  
A.S.M. Chua ◽  
G.C. Ngoh
1994 ◽  
Vol 29 (7) ◽  
pp. 109-117 ◽  
Author(s):  
J. S. Čech ◽  
P. Hartman ◽  
M. Macek

Population dynamics of polyphosphate-accumulating bacteria (PP bacteria) was studied in a laboratory sequencing batch reactor simulating anaerobic-oxic sludge system. The competition between PP bacteria and another microorganism (“G bacteria”) for anaerobic-oxic utilization of acetate as the sole source of organic carbon was observed. The competition was found to be seriously influenced by protozoan and metazoan grazing: Predation-resistant “G bacteria” forming large compact flocs outcompeted PP bacteria. Several breakdowns of enhanced biological phosphorus removal were observed. The first one was related to the development of an euglenid flagellate Entosiphon sulcatus and attached ciliates Vorticella microstoma and V. campanula. The second system collapse was connected with a rapid proliferation of rotifers. An alternative-prey predation was thought to be a mechanism of PP bacteria elimination.


1997 ◽  
Vol 35 (1) ◽  
pp. 19-26 ◽  
Author(s):  
E. Belia ◽  
P. G. Smith

The development of enhanced biological phosphorus removal (EBPR) through the bioaugmentation of a conventional activated sludge was studied. The objectives of the study were to evaluate the phosphorus removal capability of a sequencing batch reactor (SBR) when started with conventional activated sludge and augmented with a pure culture of Acinetobacter lwoffii. The effect of the addition of the pure culture on the reactor start up time, the settling properties of the sludge and on COD and nitrogen removal was also investigated. The effect of the removal of up to 70% of the bioaugmented biomass and its substitution with unconditioned sludge from a conventional sewage treatment plant was determined. This study has demonstrated that bioaugmentation can convert a conventional sewage works activated sludge to an EBPR sludge in 14 days. The sludge produced shows resilience to influent phosphate fluctuations, low D.O. and biomass replacement. The COD and nitrogen removal capabilities of the sludge and its settling properties are not affected by the addition of the pure culture.


2000 ◽  
Vol 41 (12) ◽  
pp. 79-84 ◽  
Author(s):  
C. O. Jeon ◽  
D. S. Lee ◽  
J. M. Park

Electron microscopic analysis was used to analyse the morphological characteristics of microbial sludge performing enhanced biological phosphorus removal (EBPR) in an anaerobic/aerobic sequencing batch reactor (SBR) fed with glucose as the sole carbon source. The amounts of phosphate release and uptake during the SBR cycle gradually increased with operation time and complete EBPR was achieved after about 90 days. Scanning electron microscopy (SEM) showed that the initial sludge inoculated into the SBR consisted of various microorganisms such as coccus-, rod- and bacillus-shaped bacteria, but after extended operation (more than 650 days) perpendicular cuboidal bacteria of eight coccus-shaped cells dominated the microbial sludge in the SBR reactor. The cell size of the cuboidal bacteria was about 0.7 μm in diameter. In the sludge, coccus- and rod-shaped bacteria also existed but at much lower frequency. Transmission electron microscopy (TEM) also revealed that the cuboidal bacteria dominated the sludge, but they did not contain polyphosphate granules or glycogen inclusions. The rod-shaped bacteria did not contain polyphosphate granules or glycogen inclusions either. Only coccus-shaped bacteria with a diameter of about 1.2 μm contained small black polyphosphate granules and a large white inclusion. Based on previously proposed metabolic pathways and electron microscopic results, it was inferred that the dominating cuboidal bacteria were lactic acid producing organisms (LPO) and the coccus-shaped bacteria were lactate-using phosphorus accumulating organisms (PAO).


Sign in / Sign up

Export Citation Format

Share Document