scholarly journals Purification and Kinetics of Lipase of Pseudomonas fluorescens from Vegetable Oil Polluted Soil

2020 ◽  
Vol 21 (1) ◽  
pp. 29-37
Author(s):  
B.M. Popoola ◽  
C.T. Olateru
2014 ◽  
Vol 2014 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Chinenyenwa Nweke ◽  
◽  
Philomena Igbokwe ◽  
Joseph Nwabanne ◽  
◽  
...  

1992 ◽  
Vol 70 (8) ◽  
pp. 716-719 ◽  
Author(s):  
K. J. Blessinger ◽  
G. Tunnicliff

3-Bromopyruvate inhibited 4-aminobutyrate aminotransferase (EC 2.6.1.19) from Pseudomonas fluorescens, apparently irreversibly. Kinetics of this inactivation were studied by continuously monitoring the enzyme reaction at 30 °C in the presence of inhibitor. Irrespective of how high an inhibitor concentration was present, a maximum rate of inactivation was eventually achieved (5.9 × 10−3 s−1), indicating the formation of a reversible inhibitor–enzyme complex before the final inactivation step. The dissociation constant of this complex was found to be 6.5 μM. This affinity labelling by 3-bromopyruvate suggests the presence of essential sulphydryl groups on the enzyme, since this compound is known to preferentially alkylate cysteinyl residues.Key words: 4-aminobutyrate, 4-aminobutyrate aminotransferase, inactivation, 3-bromopyruvate, affinity label, Pseudomonas fluorescens.


2013 ◽  
Vol 61 (39) ◽  
pp. 9421-9427 ◽  
Author(s):  
Kyung Min Park ◽  
Chang Woo Kwon ◽  
Seung Jun Choi ◽  
Young-Hwan Son ◽  
Seokwon Lim ◽  
...  

1994 ◽  
Vol 16 (6) ◽  
pp. 513-521 ◽  
Author(s):  
J.G.T. Kierkels ◽  
L.F.W. Vleugels ◽  
E.T.F. Geladé ◽  
D.P. Vermeulen ◽  
J. Kamphuis ◽  
...  

Author(s):  
B. M. Popoola ◽  
A. A. Olanbiwoninu

Microbial lipases occupy a place of prominence among biocatalysts and are often used for various biotechnological applications. Because of huge variation in applications, the availability of lipases with specific characteristics is still a limiting factor. There is therefore need for extensive characterisation of lipase for various applications. This work was carried out to characterise lipases from some selected bacterial isolates. Isolates identified as Bacillus subtilis, Bacillus licheniformis, Pseudomonas cepacia Pseudomonas fluorescens, Alcaligenes sp. and Flavobacterium sp. from a vegetable oil contaminated soil were characterized. Temperature, pH and ion concentration, (NaNO3 and MgSO4), incubation time, agitation speed, carbon sources and nitrogen sources were optimised for growth and lipase activity. Increase in microbial growth does not necessarily suggest increase in lipolytic activity as generally observed from this study.  Temperature, pH, incubation time and agitation speed which had optimum enzyme activities for crude enzyme of Pseudomonas fluorescens (0.8 U/mL), were 27 oC, 7.0, 24 h, and 0 rpm respectively. Growth was not generally supported by AgN03 in all the organisms selected but supported by KNO3. However MgSO4 generally supported lipase production. Olive oil and peptone as sources of carbon and nitrogen respectively supported both growth and lipase production in the selected organisms. These bacterial isolates characterized had lipolytic activities, hence they have high potential for various biotechnological applications.


2018 ◽  
Vol 24 (2) ◽  
pp. 127-137
Author(s):  
Bojana Bajic ◽  
Damjan Vucurovic ◽  
Sinisa Dodic ◽  
Zorana Roncevic ◽  
Jovana Grahovac ◽  
...  

Xanthan is a microbial biopolymer with a wide range of industrial applications and it is expected that the demand for this product will significantly increase in the coming decade and for this reason it is important to constantly work on improving all aspects of this biotechnological process. The aim of this research was to examine the kinetics of batch cultivation of Xanthomonas campestris ATCC 13951 using vegetable oil industry wastewaters as a basis for the cultivation medium, in order to produce the biopolymer xanthan. Kinetic modelling is very important for process control, reducing process costs and increasing product quality. By performing xanthan production on a medium with optimized content, the experimental values of content of biomass, carbon source and the desired product were obtained and used to determine the kinetics of biosynthesis. In order to describe biomass multiplication, product formation and carbon source consumption, the logistics, the Luedeking-Piret and modified Luedeking- -Piret equation, respectively, were successfully used. Additionally, using process simulation software (SuperPro Designer?), a process and cost model for a xanthan production facility was developed. The developed model represents the basis for a 21,294.29 and 23,107.97 kg/year xanthan production facility, which uses a vegetable oil industry wastewater-based medium and a semi-synthetic medium. The simulation model of the suggested xanthan production process, developed and based on defined kinetic models, represents an excellent basis for its further improvement and for increasing its efficiency.


2018 ◽  
Vol 25 (3) ◽  
pp. 487-502 ◽  
Author(s):  
Agnieszka Gąszczak ◽  
Grażyna Bartelmus ◽  
Izabela Greń ◽  
Daniel Janecki

Abstract The microbial degradation of vinyl acetate (VA) by Pseudomonas fluorescens PCM 2123 strain was studied in both batch and continuous modes. The purpose of the experiments was to determine the kinetic model of the cell growth and biodegradation rate of vinyl acetate (VA), which was the sole carbon and energy source for tested microorganisms. The experiments, carried out in a batch reactor for several initial concentrations of growth substrate in the liquid phase ranging from 18.6 to 373 gsubstrate·m−3 (gs·m−3) made it possible to choose the kinetic model and to estimate its constants. The Haldane inhibitory model with the values of constants: μm = 0.1202 h−1, KS = 17.195 gs·m−3, Ki = 166.88 gs·m−3 predicted the experimental data with the best accuracy. To set the parameters of maintenance metabolism it was necessary to carry out a series of continuous cultures at different dilution rates (0.05 to 0.072 h−1) and concentrations of VA in the liquid supplied to the chemostat ranging from 30.9 to 123.6 gs·m−3. The obtained data-base enabled to determine the coefficient for maintenance metabolism (me = 0.0251 gsubstrate gcell dry weight−1·h−1 (gs·gcdw−1·h−1)) as well as the maximal and observed values of yield coefficients, Yxs M = 0.463 gcdw·gs−1 and (Yxs)obs = 0.411 gcdw·gs−1, respectively. The developed kinetics was verified by comparison of the computed and obtained in batch experiments profiles of changes in biomass and growth substrate concentrations.


1999 ◽  
Vol 66 (3) ◽  
pp. 467-472 ◽  
Author(s):  
ERIX P. SCHOKKER ◽  
MARTINUS A. J. S. VAN BOEKEL

We have reported previously on the kinetics of thermal inactivation at 80–120°C of the extracellular proteinase from Pseudomonas fluorescens 22F (Schokker & van Boekel, 1997, 1999b). During these studies, we noted some inactivation during the heating up and cooling periods, but allowed for this by calculating the residual activity as a fraction of the activity after the heating up period of 2 min followed by cooling to 0°C. However, it may be of interest to evaluate the extent of inactivation during these heating up and cooling periods. If the temperature dependence of the reaction rate behaves according to Eyring's theory, inactivation would, of course, be slower than at the final heating temperature. However, during the heating and cooling of the enzyme solution, the temperature also passes the region in which autoproteolysis occurs (Schokker & van Boekel, 1998a). Prolonged residence time in the critical zone for autoproteolysis may cause increased inactivation, as has been demonstrated in electrophoresis experiments for proteinases from other Ps. fluorescens strains (Barach & Adams, 1977; Richardson, 1981; Diermayr et al. 1987). Consequently, the inactivation during the first few minutes would be dependent on factors influencing both autoproteolytic and thermal inactivation.In most of our heating experiments (Schokker & van Boekel, 1997, 1999b), inactivation during heating up was relatively rapid compared with inactivation at the final heating temperature, leading to a biphasic inactivation curve. This was also found for proteinases from many other Ps. fluorescens strains. In some studies the inactivation during heating up was not taken into account when analysing the kinetics of thermal inactivation (Patel et al. 1983; Yan et al. 1985; Fairbairn & Law, 1986), which led to misinterpretation of the mechanism or the kinetic values. Others explained the biphasic inactivation curve by autoproteolysis (Barach & Adams, 1977; Richardson, 1981; Stepaniak & Fox, 1983; Kroll & Klostermeyer, 1984; Diermayr et al. 1987), or stabilization by Ca2+ of a small portion of the proteinase to heat inactivation (Stepaniak & Fox, 1983; Azcona et al. 1988).In this paper we discuss the influence of protein, enzyme purification and Ca2+ activity on inactivation during the heating up and cooling periods. The aim of this study was to determine, using kinetic modelling, whether the inactivation during heating up and cooling periods could be explained by autoproteolysis and thermal inactivation, or whether other mechanisms are involved in the strong initial inactivation.


Energies ◽  
2014 ◽  
Vol 7 (4) ◽  
pp. 2095-2106 ◽  
Author(s):  
Nawaraj Sanjel ◽  
Jae Gu ◽  
Sea Oh

Sign in / Sign up

Export Citation Format

Share Document