Growth Responses of Triticum aestivum to Plant Growth Promoting Rhizobacteria Used as a Biofertilizer

2006 ◽  
Vol 1 (4) ◽  
pp. 330-338 ◽  
Author(s):  
Kamran Shaukat . ◽  
Shazia Affrasayab . ◽  
Shahida Hasnain .
2000 ◽  
Vol 30 (6) ◽  
pp. 845-854 ◽  
Author(s):  
Masahiro Shishido ◽  
Christopher P Chanway

Seeds of two hybrid spruce (Picea glauca (Moench) Voss × Picea engelmannii Parry ex Engelm.) ecotypes were inoculated with one of six plant growth-promoting rhizobacteria (PGPR) strains previously shown to be able to stimulate spruce growth in controlled environments. The resulting seedlings were grown in the greenhouse for 17 weeks before outplanting at four reforestation sites. Inoculation with five of the six strains caused significant seedling growth promotion in the greenhouse, which necessitated analysis of relative growth rates (RGR) to evaluate seedling performance in the field. Four months after outplanting, most strains enhanced spruce shoot or root RGRs in the field, but seedling growth responses were strain specific. For example, Pseudomonas strain Ss2-RN significantly increased both shoot and root RGRs by 10-234% at all sites, but increases of 28-70% were most common. In contrast, Bacillus strain S20-R was ineffective at all outplanting sites. In addition, seedlings inoculated with four of the six strains had significantly less shoot injury than control seedlings at all sites. Evaluation of root colonization by PGPR indicated that bacterial population declines were not related to spruce growth response variability in the field. Our results indicate that once plant growth promotion is induced in the greenhouse, seedling RGR can increase by more than 100% during the first growing season in the field. However RGR increases of 21-47% were more common and may be more representative of the magnitude of biomass increases that can result from PGPR inoculation.


2018 ◽  
Vol 9 (2) ◽  
pp. 53-63
Author(s):  
Ammara Abid ◽  
Ambreen Ahmed

Plant growth promoting rhizobacteria (PGPR) play an essential part in transformation, solubilization, and mobilization of nutrients procured from the soil. Plant-microbe interaction can be termed as an eco-friendly approach which not only improves plant growth but helps in sustaining the soil and prevents environmental degradation from agrochemicals. PGPR improve plant growth through various mechanisms. One of the mechanisms involved is phytohormone production by the bacterial strains. In the current study, spectral analysis of thirteen already isolated and identified auxin-producing microbial strains (AAL1, AB8, A7B, A5C, A3E, A11E, AL2, A9G, A12G, A13G, AM10, P4, and S6) was carried out. Fourier transform infrared spectroscopy (FTIR) of the bacterial IAA exhibited close structural similarity between bacterial IAA and standard IAA. The growth-enhancing capability of strains was verified through the application of these strains on Triticum aestivum seedlings and enhancement of growth was statistically analyzed which indicated remarkable improvement in growth and metabolism both under laboratory and field conditions. Several bacterial isolates also proved to be very effective in improving biochemical parameters of plants. The current study suggested that the application of IAA-producing PGPR as biofertilizer is effective in enhancing plant growth as well as plant yield.


Sign in / Sign up

Export Citation Format

Share Document