Management of Plant Parasitic Nematodes Associated with Chilli Through Organic Soil Amendments

2001 ◽  
Vol 4 (4) ◽  
pp. 417-418 ◽  
Author(s):  
Aly Khan . ◽  
S.S. Shaukat . ◽  
F. Qamar . ◽  
S. Islam . ◽  
A.A. Hakro . ◽  
...  
Soil Research ◽  
2014 ◽  
Vol 52 (6) ◽  
pp. 604 ◽  
Author(s):  
L. Rahman ◽  
M. A. Whitelaw-Weckert ◽  
B. Orchard

This field trial investigated the effect on vineyard nematodes of organic soil amendments: poultry-litter (PL) biochar, composted cow manure, composted green waste and un-composted rice hulls. To investigate their effects on disease suppression, we chose a vineyard containing healthy grapevines proximal to grapevines with fungal root disease (caused by Ilyonectria spp.). Spring and winter surveys showed that nematodes did not interact with Ilyonectria root disease. Plant-parasitic citrus and ring nematodes predominated in deep soil (10–20 cm), whereas Rhabditis spp. (bacterial-feeder) and omnivorous Dorylaimidae (excluding plant-parasitic and predators) predominated in shallow soil (0–10 cm). After 2 years, the amendments generally decreased the total plant-parasitic nematode (TPPN) populations while increasing the total (non-plant-parasitic) free-living nematodes (TFLN), thus increasing the TFLN : TPPN ratios. PL biochar caused the greatest TPPN decreases (8.5- and 12.9-fold for diseased and asymptomatic grapevines, respectively). The changes caused by the organic amendments were less favourable in a drier season and for diseased grapevines, indicating the importance of seasonal conditions and initial disease status for interpretation of soil organic amendment trial results. This is the first vineyard investigation comparing the impact of PL biochar and other organic soil amendments on parasitic and non-parasitic nematodes.


Nematology ◽  
2011 ◽  
Vol 13 (2) ◽  
pp. 133-153 ◽  
Author(s):  
Tim C. Thoden ◽  
Gerard W. Korthals ◽  
Aad J. Termorshuizen

Abstract The use of organic soil amendments, such as green manures, animal manures, composts or slurries, certainly has many advantageous aspects for soil quality and is suggested as a promising tool for the management of plant-parasitic nematodes. However, during a recent literature survey we also found numerous studies reporting an increase of plant-parasitic nematodes after the use of organic amendments. Therefore, we critically re-evaluated the usefulness of organic amendments for nematode management and suggest possible mechanisms for a stimulation of plant-parasitic nematodes, as well as mechanisms that might be causing a reduction of plant-parasitic nematodes. In addition, we also elucidate a possible mechanism that might be responsible for the observed overall positive effects of organic amendments on crop yields. It is likely that a significant part of this is, inter alia, due to the proliferation of non-pathogenic, free-living nematodes and their overall positive effects on soil microbial populations, organic matter decomposition, nutrient availability, plant morphology and ecosystem stability.


Bragantia ◽  
2012 ◽  
Vol 71 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Alexandre Macedo Almeida ◽  
Ricardo Moreira Souza ◽  
Vicente Martins Gomes ◽  
Guilherme Bessa Miranda

Guava decline is a complex disease involving Meloidogyne enterolobii and Fusarium solani and it has caused major direct losses to Brazilian growers. Although several strategies have been sought to control the nematode, the use of organic soil amendments is currently the best approach to manage this disease. To assess the best amount of meat and bone meal (MBM) to be incorporated into the soil, guava seedlings inoculated with M. enterolobii were treated with 1-5% v/v of the MBM. Ninety days later variables related to nematode reproduction and plant development were evaluated, which indicated a potential nematicidal effect of the MBM at 3%. Another experiment assessed nematode- and plant-related variables 90 days after treatment of the seedlings with MBM, chitosan, shrimp shell or neem cake at 3%, 0.05%, 2% and 0.1% v/v, respectively. The MBM ranked first, reducing nematode reproduction. This MBM rate was converted to 25 kg/tree and assessed in three application regimes (monthly, bimonthly or trimonthly), for six months, in an orchard affected by guava decline. The variables assessed were soil density of colony forming units (CFU) of bacteria and fungus, and soil and/or root density of M. enterolobii, Helicotylenchus sp., and of different nematode trophic groups. In all three application regimes the MBM reduced all plant-parasitic nematodes in the soil and the fungus CFUs. It also promoted an increase in bacterial CFU and bacterivorous nematodes.


2013 ◽  
Vol 50 (1) ◽  
pp. 3-14 ◽  
Author(s):  
M. Renčo

AbstractUse of organic soil amendments is a traditional agricultural practice for improving physical and chemical soil properties, soil structure, temperature and humidity conditions as well as nutrients content which are needful for plants growth. Application of organic materials to soil can cause a change in soil microflora and microfauna including soil nematodes. Nematodes, are the most ample and varied group of soil fauna. They are ever-present habitants of all soil types with high population densities. The changes in soil nematodofauna can results in an increase in the number of beneficial nematodes such as bacterial or fungal feeders and decrease and/or suppression in the occurrence of economically important plant parasitic nematodes. A variety of organic amendments, such as animal and green manure, undecomposed (raw) or decomposed materials (compost) are used for this purpose. Generally, plant parasitic nematodes have been controlled mainly by chemical soil fumigants and nematicides, agricultural practices or resistant cultivars. However, organic amendments can provide an environmentally friendly alternative to the use of chemical nematicides, which are often expensive, of limited availability in many developing countries and above all environmentally hazardous.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 145
Author(s):  
Marek Renčo ◽  
Nikoletta Ntalli ◽  
Trifone D’Addabbo

Soil amendments with plant materials from Medicago species are widely acknowledged for a suppressive effect on plant-parasitic nematodes but their impact on beneficial components of soil nematofauna is still unknown. A study on potted tomato was carried out to investigate the short-time effects on the overall nematofauna of dry biomasses from six different Medicago species, i.e., M. sativa, M. heyniana, M. hybrida, M. lupulina, M. murex and M. truncatula, incorporated to natural soil at 10, 20, or 40 g kg−1 soil rates. All amendments resulted in a significant decrease of the total nematofauna biomass, whereas total abundance was significantly reduced only by M. heyniana, M. hybrida, and M. lupulina biomasses. Almost all the Medicago amendments significantly reduced the relative abundance of plant-parasites and root fungal feeders. All amendments significantly increased the abundance of bacterivores, whereas fungivores significantly increased only in soil amended with M. heyniana, M. lupulina and M. sativa plant materials. Mesorhabditis and Rhabditis were the most abundant genera of bacterivores, whereas Aphelenchoides and Aphelenchus prevailed among the fungivores. Predators were poorly influenced by all the tested Medicago biomasses, whereas the abundance of omnivores was negatively affected by M. heyniana and M. lupulina. Values of the Maturity Index and Sum Maturity Index were reduced by treatments with M. heyniana, M. hybrida, M. lupulina and M. sativa plant materials, whereas most of the tested amendments decreased values of the Channel Index while increasing those of the Enrichment Index. Enrichment and bacterivore footprints raised following soil addition with Medicago biomasses, whereas composite and fungivore footprints were significantly reduced. According to their overall positive effects on soil nematofauna, amendments with Medicago plant materials or their formulated derivatives could represent an additional tool for a sustainable management of plant-parasitic nematodes.


EDIS ◽  
2017 ◽  
Vol 2017 (2) ◽  
pp. 8
Author(s):  
Zane Grabau

This 8-page fact sheet written by Zane J. Grabau and published in January 2017 by the UF Department of Entomology and Nematology explains how to diagnose and manage nematode problems in cotton production.­http://edis.ifas.ufl.edu/ng015


Sign in / Sign up

Export Citation Format

Share Document