Effect of Vitamin C Supplementation on Postprandial Oxidative Stress and Lipid Profile in Type 2 Diabetic Patients

2011 ◽  
Vol 14 (19) ◽  
pp. 900-904 ◽  
Author(s):  
Zohreh Mazloom ◽  
Najmeh Hejazi ◽  
Mohammad-Hossein Dabbaghman ◽  
Hamid-Reza Tabatabaei ◽  
Afsane Ahmadi ◽  
...  
2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Najah RH ◽  
Mohammad AAH ◽  
Ammar RMR

Introduction: Evidence has long existed regarding the relationship between oxidative stress and diabetes. The present study was conducted to assess the effect of atorvastatin on selected oxidative stress parameters in the form of reduced glutathione (GSH), lipid peroxidation byproduct malondialdehyde (MDA) levels, glutathione –S- transferase (GST) activity and catalase (CAT) activity) and its effect on lipid profile (total cholesterol (TC), triglyceride (TG), high density lipoprotein (HDL), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) in dyslipidaemic type 2 diabetic patients . Materials and Methods: Fifty nine dyslipidaemic type 2 diabetic patients were included in this study. Full history was taken and general examination of patients was performed. Patients studied were taking glibenclamide (an oral hypoglycaemic drug) during the study as a treatment for their disease. These patients were followed up for 60 days and divided randomly into 2 groups. Group I (n = 31): no drug was given and served as dyslipidaemic diabetic control. Group II (n = 28): received atorvastatin tablets 20 mg once daily at night. Of the 59 Fifty patients, 46 completed the study while 13 patients withdrew. This is due to non compliance of the patients. Blood samples were drawn from the patients at the beginning and after 60 days of follow up between 8:30 & 10:30 am after at least 12-14 hours fast. Fasting blood glucose, lipid profile, selected oxidative stress parameters (GSH, MDA levels, GST and CAT activities) were measured. Renal and hepatic functions were also assessed. Results: This study revealed that: atorvastatin treatment increased serum GSH; reduced MDA levels significantly while did not significantly affect CAT and GST activity. In atorvastatin treatment, TC, TG, LDL and VLDL decreased significantly while HDL increased significantly. Conclusion: There was insignificant correlations between atorvastatin induced changes in the oxidation markers and the observed changes of the lipid profile.


2018 ◽  
Vol 26 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Mansour Alsharidah ◽  
Metab. Algeffari ◽  
Abdel-Moneim Hafez Abdel-Moneim ◽  
Mohamed Faisal Lutfi ◽  
Haila Alshelowi

2011 ◽  
Vol 44 (13) ◽  
pp. 1105-1109 ◽  
Author(s):  
Gabriela Bonfanti ◽  
Ronise B. Ceolin ◽  
Tiago Valcorte ◽  
Karine S. De Bona ◽  
Leidiane de Lucca ◽  
...  

Pharmacia ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 327-332
Author(s):  
Ammar A.Y. Almulathanon ◽  
Jehan A. Mohammad ◽  
Fatimah Haitham Fathi

It is known that there is a strong association between oxidative stress and insulin resistance in type 2 diabetes mellitus (T2DM). Although the role of glibenclamide in diabetes treatment has been evaluated, there is only limited evidence about its antioxidant effects in diabetic patients. Moreover, previous studies showed discrepant results regarding the effects of metformin on antioxidant/ oxidant parameters in type 2 diabetic patients. The present study aimed to evaluate the effects of metformin versus glibenclamide on oxidative stress biomarkers, represented by serum malondialdehyde (MDA), nonenzymatic, and enzymatic antioxidants in type 2 diabetic patients. Forty-six patients with T2DM participated in this study and categorized into 3 groups, Group A included 17 newly diagnosed diabetic patients, group B included 15 diabetic patients received metformin monotherapy (1000 mg/day) for up to 1 year and group C included 14 diabetic patients received glibenclamide monotherapy (5 mg/day) for up to 1 year. Serum MDA, catalase (CAT), vitamin C, E, and reduced glutathione (GSH) were measured. We found significantly lower concentrations of MDA and significantly higher antioxidant levels (CAT, GSH, vitamin C, and E) in the metformin-treated group compared to the glibenclamide counterpart. Our data confirmed that metformin has a more beneficial effect on oxidant/antioxidant status compared to glibenclamide, therefore, provides protection against reactive oxygen species (ROS) induced oxidative damage during diabetes.


2016 ◽  
Vol 22 (18) ◽  
pp. 2650-2656 ◽  
Author(s):  
Noelia Diaz-Morales ◽  
Susana Rovira-Llopis ◽  
Irene Escribano-Lopez ◽  
Celia Bañuls ◽  
Sandra Lopez-Domenech ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document