scholarly journals On the number of distinct k-decks: Enumeration and bounds

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Johan Chrisnata ◽  
Han Mao Kiah ◽  
Sankeerth Rao Karingula ◽  
Alexander Vardy ◽  
Eitan Yaakobi Yao ◽  
...  

<p style='text-indent:20px;'>The <i><inline-formula><tex-math id="M2">\begin{document}$ k $\end{document}</tex-math></inline-formula>-deck</i> of a sequence is defined as the multiset of all its subsequences of length <inline-formula><tex-math id="M3">\begin{document}$ k $\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id="M4">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> denote the number of distinct <inline-formula><tex-math id="M5">\begin{document}$ k $\end{document}</tex-math></inline-formula>-decks for binary sequences of length <inline-formula><tex-math id="M6">\begin{document}$ n $\end{document}</tex-math></inline-formula>. For binary alphabet, we determine the exact value of <inline-formula><tex-math id="M7">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> for small values of <inline-formula><tex-math id="M8">\begin{document}$ k $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M9">\begin{document}$ n $\end{document}</tex-math></inline-formula>, and provide asymptotic estimates of <inline-formula><tex-math id="M10">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id="M11">\begin{document}$ k $\end{document}</tex-math></inline-formula> is fixed.</p><p style='text-indent:20px;'>Specifically, for fixed <inline-formula><tex-math id="M12">\begin{document}$ k $\end{document}</tex-math></inline-formula>, we introduce a trellis-based method to compute <inline-formula><tex-math id="M13">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> in time polynomial in <inline-formula><tex-math id="M14">\begin{document}$ n $\end{document}</tex-math></inline-formula>. We then compute <inline-formula><tex-math id="M15">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M16">\begin{document}$ k \in \{3,4,5,6\} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M17">\begin{document}$ k \leqslant n \leqslant 30 $\end{document}</tex-math></inline-formula>. We also improve the asymptotic upper bound on <inline-formula><tex-math id="M18">\begin{document}$ D_k(n) $\end{document}</tex-math></inline-formula>, and provide a lower bound thereupon. In particular, for binary alphabet, we show that <inline-formula><tex-math id="M19">\begin{document}$ D_k(n) = O\bigl(n^{(k-1)2^{k-1}+1}\bigr) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M20">\begin{document}$ D_k(n) = \Omega(n^k) $\end{document}</tex-math></inline-formula>. For <inline-formula><tex-math id="M21">\begin{document}$ k = 3 $\end{document}</tex-math></inline-formula>, we moreover show that <inline-formula><tex-math id="M22">\begin{document}$ D_3(n) = \Omega(n^6) $\end{document}</tex-math></inline-formula> while the upper bound on <inline-formula><tex-math id="M23">\begin{document}$ D_3(n) $\end{document}</tex-math></inline-formula> is <inline-formula><tex-math id="M24">\begin{document}$ O(n^9) $\end{document}</tex-math></inline-formula>.</p>

2015 ◽  
Vol 26 (02) ◽  
pp. 211-227 ◽  
Author(s):  
Hae-Sung Eom ◽  
Yo-Sub Han ◽  
Kai Salomaa

We investigate the state complexity of multiple unions and of multiple intersections for prefix-free regular languages. Prefix-free deterministic finite automata have their own unique structural properties that are crucial for obtaining state complexity upper bounds that are improved from those for general regular languages. We present a tight lower bound construction for k-union using an alphabet of size k + 1 and for k-intersection using a binary alphabet. We prove that the state complexity upper bound for k-union cannot be reached by languages over an alphabet with less than k symbols. We also give a lower bound construction for k-union using a binary alphabet that is within a constant factor of the upper bound.


1998 ◽  
Vol 58 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Shiqing Zhang

Using the equivariant Ljusternik-Schnirelmann theory and the estimate of the upper bound of the critical value and lower bound for the collision solutions, we obtain some new results in the large concerning multiple geometrically distinct periodic solutions of fixed energy for a class of planar N-body type problems.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


2015 ◽  
Vol 65 (4) ◽  
Author(s):  
Giovanna D’Agostino ◽  
Giacomo Lenzi

AbstractIn this paper we consider the alternation hierarchy of the modal μ-calculus over finite symmetric graphs and show that in this class the hierarchy is infinite. The μ-calculus over the symmetric class does not enjoy the finite model property, hence this result is not a trivial consequence of the strictness of the hierarchy over symmetric graphs. We also find a lower bound and an upper bound for the satisfiability problem of the μ-calculus over finite symmetric graphs.


2018 ◽  
Vol 28 (3) ◽  
pp. 365-387
Author(s):  
S. CANNON ◽  
D. A. LEVIN ◽  
A. STAUFFER

We give the first polynomial upper bound on the mixing time of the edge-flip Markov chain for unbiased dyadic tilings, resolving an open problem originally posed by Janson, Randall and Spencer in 2002 [14]. A dyadic tiling of size n is a tiling of the unit square by n non-overlapping dyadic rectangles, each of area 1/n, where a dyadic rectangle is any rectangle that can be written in the form [a2−s, (a + 1)2−s] × [b2−t, (b + 1)2−t] for a, b, s, t ∈ ℤ⩾ 0. The edge-flip Markov chain selects a random edge of the tiling and replaces it with its perpendicular bisector if doing so yields a valid dyadic tiling. Specifically, we show that the relaxation time of the edge-flip Markov chain for dyadic tilings is at most O(n4.09), which implies that the mixing time is at most O(n5.09). We complement this by showing that the relaxation time is at least Ω(n1.38), improving upon the previously best lower bound of Ω(n log n) coming from the diameter of the chain.



Sign in / Sign up

Export Citation Format

Share Document