scholarly journals Global well-posedness for fractional Sobolev-Galpern type equations

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Huy Tuan Nguyen ◽  
Nguyen Anh Tuan ◽  
Chao Yang

<p style='text-indent:20px;'>This article is a comparative study on an initial-boundary value problem for a class of semilinear pseudo-parabolic equations with the fractional Caputo derivative, also called the fractional Sobolev-Galpern type equations. The purpose of this work is to reveal the influence of the degree of the source nonlinearity on the well-posedness of the solution. By considering four different types of nonlinearities, we derive the global well-posedness of mild solutions to the problem corresponding to the four cases of the nonlinear source terms. For the advection source function case, we apply a nontrivial limit technique for singular integral and some appropriate choices of weighted Banach space to prove the global existence result. For the gradient nonlinearity as a local Lipschitzian, we use the Cauchy sequence technique to show that the solution either exists globally in time or blows up at finite time. For the polynomial form nonlinearity, by assuming the smallness of the initial data we derive the global well-posed results. And for the case of exponential nonlinearity in two-dimensional space, we derive the global well-posedness by additionally using an Orlicz space.</p>

2019 ◽  
Vol 22 (4) ◽  
pp. 918-944 ◽  
Author(s):  
William McLean ◽  
Kassem Mustapha ◽  
Raed Ali ◽  
Omar Knio

Abstract We establish the well-posedness of an initial-boundary value problem for a general class of linear time-fractional, advection-diffusion-reaction equations, allowing space- and time-dependent coefficients as well as initial data that may have low regularity. Our analysis relies on novel energy methods in combination with a fractional Gronwall inequality and properties of fractional integrals.


2015 ◽  
Vol 12 (02) ◽  
pp. 221-248 ◽  
Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Ostrovsky–Hunter equation provides a model for small-amplitude long waves in a rotating fluid of finite depth. It is a nonlinear evolution equation. Here the well-posedness of bounded solutions for a non-homogeneous initial-boundary value problem associated with this equation is studied.


2012 ◽  
Vol 09 (02) ◽  
pp. 239-261 ◽  
Author(s):  
GUSTAV HOLZEGEL

In this paper, we prove a well-posedness theorem for the massive wave equation (with the mass satisfying the Breitenlohner–Freedman bound) on asymptotically anti-de Sitter spaces. The solution is constructed as a limit of solutions to an initial boundary value problem with boundary at a finite location in spacetime by finally pushing the boundary out to infinity. The solution obtained is unique within the energy class (but non-unique if the decay at infinity is weakened).


2013 ◽  
Vol 28 (22n23) ◽  
pp. 1340015 ◽  
Author(s):  
DAVID HILDITCH

These lecture notes accompany two classes given at the NRHEP2 school. In the first lecture I introduce the basic concepts used for analyzing well-posedness, that is the existence of a unique solution depending continuously on given data, of evolution partial differential equations. I show how strong hyperbolicity guarantees well-posedness of the initial value problem. Symmetric hyperbolic systems are shown to render the initial boundary value problem well-posed with maximally dissipative boundary conditions. I discuss the Laplace–Fourier method for analyzing the initial boundary value problem. Finally, I state how these notions extend to systems that are first-order in time and second-order in space. In the second lecture I discuss the effect that the gauge freedom of electromagnetism has on the PDE status of the initial value problem. I focus on gauge choices, strong-hyperbolicity and the construction of constraint preserving boundary conditions. I show that strongly hyperbolic pure gauges can be used to build strongly hyperbolic formulations. I examine which of these formulations is additionally symmetric hyperbolic and finally demonstrate that the system can be made boundary stable.


2012 ◽  
Vol 91 (105) ◽  
pp. 111-123 ◽  
Author(s):  
Bosko Jovanovic ◽  
Lubin Vulkov

We investigate an initial-boundary-value problem for one dimensional parabolic equations in disjoint intervals. Under some natural assumptions on the input data we proved the well-posedness of the problem. Nonnegativity and energy stability of its weak solutions are also studied.


Author(s):  
Wanrong Yang ◽  
Xiaokui Zhao

We consider the global well-posedness and asymptotic behavior of compressible viscous, heat-conductive, and non-resistive magnetohydrodynamics (MHD) fluid in a field of external forces over three-dimensional periodic thin domain $\Omega=\mathbb{T}^2\times(0,\delta)$. The unique existence of the stationary solution is shown under the adhesion and the adiabatic boundary conditions. Then, it is shown that a solution to the initial boundary value problem with the same boundary and periodic conditions uniquely exists globally in time and converges to the stationary solution as time tends to infinity. Moreover, if the external forces are small or disappeared in an appropriate Sobolev space, then $\delta$ can be a general constant. Our proof relies on the two-tier energy method for the reformulated system in Lagrangian coordinates and the background magnetic field which is perpendicular to the flat layer. Compared to the work of Tan and Wang (SIAM J. Math. Anal. 50:1432–1470, 2018), we not only overcome the difficulties caused by temperature, but also consider the big external forces.


Sign in / Sign up

Export Citation Format

Share Document