scholarly journals Effect of thermal pretreatment at 70 °C for one hour (EU hygienization conditions) of various organic wastes on methane production under mesophilic anaerobic digestion

2018 ◽  
Vol 5 (2) ◽  
pp. 117-129 ◽  
Author(s):  
Xiaojun Liu ◽  
◽  
Ikbel Souli ◽  
Mohamad-Amr Chamaa ◽  
Thomas Lendormi ◽  
...  
2006 ◽  
Vol 53 (8) ◽  
pp. 23-32 ◽  
Author(s):  
D. Bolzonella ◽  
P. Pavan ◽  
S. Mace ◽  
F. Cecchi

This paper presents a comparison of dry anaerobic digestion reactors fed with differently sorted municipal organic solid wastes. One reactor was fed with source sorted organic wastes and a second reactor was fed with mixed organic wastes consisting of grey wastes, mechanically selected municipal solid wastes and sludge. The two reactors utilised the same process (Valorga) and operational conditions at full scale. The results of the study emphasise the influence of the kind of treated material on the process performances, especially in terms of biogas and methane production, thus, energy reclamation. The reactor treating the source sorted organic waste and the reactor treating the mixed organic wastes generated some 200 m3 and 60 m3 of biogas per ton of waste treated, respectively, while the specific methane production was some 0.40 and 0.13 m3CH4/kgTVS, respectively. The mass balance and the final fate of the digested material from the two reactors were also clearly different. As for the costs, these were some 29 € per ton of treated waste (50% for personnel) and 53 €/ton for disposing of the rejected materials. Incomes were some 100 €/ton (on average) and an other 15 €/ton came from green certificates. The initial investment was 16 million Euros.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Leonidas Matsakas ◽  
Ulrika Rova ◽  
Paul Christakopoulos

The potential of utilizing dried sweet sorghum stalks as raw material for anaerobic digestion has been evaluated. Two different treatments were tested, a mild thermal and an enzymatic, alone or in combination. Thermal pretreatment was found to decrease the methane yields, whereas one-step enzymatic treatment resulted in a significant increase of 15.1% comparing to the untreated sweet sorghum. Subsequently, in order to increase the total methane production, the combined effect of enzyme load and I/S on methane yields from sweet sorghum was evaluated by employing response surface methodology. The obtained model showed that the maximum methane yield that could be achieved is 296 mL CH4/g VS at I/S ratio of 0.35 with the addition of 11.12 FPU/g sweet sorghum.


2021 ◽  
Author(s):  
Masoud Kamali ◽  
Reza Abdi ◽  
Abbas Rohani ◽  
Shamsollah Abdollahpor ◽  
Sirous Ebrahimi

Abstract Anaerobic digestion (AD) of Organic Fraction of Municipal Solid Waste (OFMSW), leads to a reduction of methane emission to the atmosphere besides production of bioenergy. In this work, applying moderate temperature thermal pretreatment at 70, 90 and 110°C for the durations of 30,75,120 and 180 minutes on relatively high solid concentration (16%) OFMSW AD using batch biomethane potential assays (BMP) under mesophilic conditions has been studied. To evaluate the effects of each temperature and time of pretreatment and their interactions on methane production, factorial experiments in completely randomized design were implemented. The criteria used for deciding on the effectiveness of the thermal pretreatments were the methane enhancement and net energy production. Though, all the aforementioned thermal pretreatments increased methane yield, the energy balance evaluation revealed that the recovery of bioenergy is feasible for some of these pretreatments and could contribute to a positive energy balance. The best result of methane production (342.66 ± 6.11 ml CH4/g VS), which was approximately 34% higher compared with the specific methane production of untreated OFMSW, was obtained by implementing pretreatment at 90°C for 120 minutes as well as the net energy generation of 57.26 KWh/ton, resulting from applying this thermal pretreatment.


2021 ◽  
Author(s):  
Jian Zhang ◽  
Peng Gan ◽  
Ru-yi Wang ◽  
Tian Xie ◽  
Yang Liu ◽  
...  

Abstract Thermal pretreatment was an effective method to improve the anaerobic digestion of waste activated sludge. However its application in China was still hindered by the high energy demand. In order to balance the energy consumption of sludge thermal pretreatment integrated with anaerobic digestion, food waste was introduced as co-substrate to achieve an energy self-sustainable sludge treatment system. Anaerobic biodegradability test was performed using thermal pretreated sludge and food waste in order to clarify the kinetics and mechanism of co-digestion, especially the synergetic effect on specific methane yield. The prominent synergetic effect was an initial acceleration of cumulative methane production by 20.7- 23.8% observed during the first 15 days, and the cumulative methane production of feedstock can be calculated proportionately from its composition. Between the evaluated models, modified Gompertz model presented a better agreement of the experimental results and it was able to describe the synergetic effect, assessed by the relative deviation between theoretical estimation and the experimental results of co-digestion tests. This feature made modified Gompertz model a suitable tool for methane production prediction of mono- and co-digestion. Energy assessment shown that co-digestion with food waste was a sustainable solution to maintain the integration of thermal pretreatment and anaerobic digestion energy neutral or even positive. Besides, the performance of sludge dewatering was a crucial factor for the energy balance.


2015 ◽  
Vol 7 (2) ◽  
pp. 307-315 ◽  
Author(s):  
Andrea Hom-Diaz ◽  
Francesco Baldi ◽  
Paqui Blánquez ◽  
Lidia Lombardi ◽  
Lucía Martín-González ◽  
...  

2011 ◽  
Vol 102 (11) ◽  
pp. 6443-6448 ◽  
Author(s):  
C. Salomoni ◽  
A. Caputo ◽  
M. Bonoli ◽  
O. Francioso ◽  
M.T. Rodriguez-Estrada ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
pp. 1-9
Author(s):  
T.U. Habarakada Liyanage ◽  
◽  
Sandhya Babel ◽  

Anaerobic digestion (AD) is an energy production process and food waste is a potential feedstock. The main biochemical reactions are Hydrolysis, Acidogenesis, Acetogenesis, and Methanogenesis. The hydrolysis step acts as the rate-limiting reaction and the pretreatment of the feedstocks can be used to support this step. In this research, thermal pretreatment was used as a potential method for food waste pretreatment. Six different pretreatment conditions were used: two different temperatures (80oC and 100oC) and three different pretreatment times (30, 60, and 90 min). The Bio-Methane Potential (BMP) test was conducted using 120 mL serum bottles for 20 days to determine the most suitable pretreatment conditions. An experiment was also conducted at the selected optimal conditions (80oC for 90 min) using a small-scale bioreactor against the control with a NaHCO3 buffer solution. The highest Soluble Chemical Oxygen Demand (SCOD) was observed at 100oC for 90 min. The optimal pretreatment was selected as 80oC for 90 min, which produced 14.75 mL/g VS of methane while the control produced 8.64 mL/g VS in BMP test. After a few days, the methane production started to slow down due to a decrease in pH. When a buffer was added, a specific methane yield of 120.13 mL/g VS was observed in the small-scale bioreactor. This was an 11.24% increase compared to the buffered control without thermal pretreatment. In conclusion, thermal pretreatment has a potential to enhance the AD but it is economical to use with less biodegradable waste than food waste.


Sign in / Sign up

Export Citation Format

Share Document