modified gompertz model
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
I.M. Abu Zeid ◽  
M.F. Rahman ◽  
Mohd Yunus Shukor

More and more people are looking at bioremediation as a cheaper option to physhiochemical techniques for cleaning up pollution from farming, mines, and other chemical industries. Toxic effects of molybdenum on spermatogenesis harm not only humans but also livestock and aquatic life. As a result, efforts are being made to remove it from the ecosystem. A microorganism that can convert soluble molybdenum into colloidal molybdenum blue has been discovered. Phosphate concentrations were optimum between 2.5 and 5, molybdate concentrations between 15 and 20, pH between 6, and temperature between 25 and 34 degrees Celsius for the bacteria to thrive. Absorption spectrum of Mo-blue shows a peak at 865 nm and a shoulder at 700 nm, which indicates that it is in fact reduced phosphomolybdate. Copper, mercury, silver, copper, and chromium are all hazardous heavy metals that hinder the synthesis of Mo-blue. Bacillus sp. strain Zeid 15 is the most likely candidate for the bacterium's identity. As part of our screening, we look for the bacterium's capacity to employ different nitriles and amides as potential electron donors for molybdenum reduction or as substrates for growth. A microplate format was used for the screening. The bacterium was able to use the amides acrylamide and propionamide as sources of electron donor for reduction. Mo-blue production was best supported by acrylamide between 750 and 1250 mg/L, and propionamide between 750 and 1000 mg/L. In addition, these amides including acetamide could support the growth of the bacterium. The modified Gompertz model was utilized to model the growth of this bacterium on amides. The model’s growth parameters obtained were lag periods of 1.372, 1.562 and 1.639 d and maximum specific growth rates of 1.38, 0.95 and 0.734 d-1, for acrylamide, acetamide and propionamide, respectively. The capacity of this bacterium to decontaminate simultaneously amides and molybdenum is a novel characteristic that will be very beneficial in bioremediation.


2021 ◽  
Author(s):  
Jian Zhang ◽  
Peng Gan ◽  
Ru-yi Wang ◽  
Tian Xie ◽  
Yang Liu ◽  
...  

Abstract Thermal pretreatment was an effective method to improve the anaerobic digestion of waste activated sludge. However its application in China was still hindered by the high energy demand. In order to balance the energy consumption of sludge thermal pretreatment integrated with anaerobic digestion, food waste was introduced as co-substrate to achieve an energy self-sustainable sludge treatment system. Anaerobic biodegradability test was performed using thermal pretreated sludge and food waste in order to clarify the kinetics and mechanism of co-digestion, especially the synergetic effect on specific methane yield. The prominent synergetic effect was an initial acceleration of cumulative methane production by 20.7- 23.8% observed during the first 15 days, and the cumulative methane production of feedstock can be calculated proportionately from its composition. Between the evaluated models, modified Gompertz model presented a better agreement of the experimental results and it was able to describe the synergetic effect, assessed by the relative deviation between theoretical estimation and the experimental results of co-digestion tests. This feature made modified Gompertz model a suitable tool for methane production prediction of mono- and co-digestion. Energy assessment shown that co-digestion with food waste was a sustainable solution to maintain the integration of thermal pretreatment and anaerobic digestion energy neutral or even positive. Besides, the performance of sludge dewatering was a crucial factor for the energy balance.


2021 ◽  
Author(s):  
Qian Li ◽  
Zeqin Tang ◽  
Jiahui Zhang ◽  
Jingtao Hu ◽  
Jianmeng Chen ◽  
...  

Abstract Simultaneous biodegradation of malodorous 1-propanethiol (PT) and dimethyl sulfide (DMS) inoculated with Pseudomonas putida S-1 and Alcaligenes sp. SY1 were investigated and interactions implicated were explored. Results showed that PT was completely degraded in 33 h, while a lag of 10 h was observed for DMS degradation alone, and the lag even extended to 81 h in the binary mixture. Mechanism analysis found that the lag was mainly attributed to the exposure of DMS degrader (Alcaligenes sp. SY1), rather than PT metabolites and PT degrader. The exposure time and PT concentration influenced the lag duration much. Citric acid could effectively reduce the lag. Pseudo first-order model was proved suitable for the description of PT degradation, revealing that PT degradation could be enhanced in presence of DMS regardless of its concentration. A modified Gompertz model, incorporated the lag phase, was developed for the description of DMS degradation in the mixture, revealing that DMS degradation depended on the initial PT concentration. When the lag was not considered, PT with low-concentration could promote DMS biodegradation, while a higher concentration (>20 mg·L−1) cast negative effect.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 284
Author(s):  
Xiaojue Li ◽  
Naoto Shimizu

To enhance anaerobic fermentation during food waste (FW) digestion, pretreatments can be applied or the FW can be co-digested with other waste. In this study, lipase addition (LA), hydrothermal pretreatment (HTP), and a combination of both methods (HL) were applied to hydrolyze organic matter in FW. Furthermore, the effects of crude glycerol (CG), which provided 5%, 10%, and 15% of the volatile solids (VS) as co-substrate (denoted as CG5, CG10, and CG15, respectively), on the anaerobic digestion of FW were assessed. With an increasing proportion of CG in the co-digestion experiment, CG10 showed higher methane production, while CG15 negatively affected the anaerobic digestion (AD) performance owing to propionic acid accumulation acidifying the reactors and inhibiting methanogen growth. As the pretreatments partially decomposed hard-to-degrade substances in advance, pretreated FW showed a stronger methane production ability compared with raw FW, especially using the HL method, which was significantly better than co-digestion. HL pretreatment was shown to be a promising option for enhancing the methane potential value (1.773 NL CH4/g VS) according to the modified Gompertz model.


2021 ◽  
Author(s):  
Ayse Hilal Ulukardesler

Abstract Grass is a highly desirable substrate for anaerobic digestion because of its higher biodegradability and biogas/methane yield. It contains a large amount of organic matter, which can be digested anaerobically to produce biogas. Anaerobic co-digestion of grass, cow manure and sludge was studied under mesophilic conditions for 65 days. Experiments were performed on a feed ratio of grass/manure 5, 10, 15, 20, 25%, respectively. During the experiments the volume and concentration of biogas and methane were recorded daily. The maximum cumulative biogas and methane yield was obtained as 331.75 mLbiogas/gVS and 206.64 mLCH4/gVS for 25% ratio. Also, the results of the experiments were tested on the three different kinetics model which are the first order kinetic model, modified Gompertz model and Logistics model. As a result of the study, it was found that by using grass waste 1.2.109 kWh/year electricity may be produced and 1.106 tons/year CO2 greenhouse gas emission may be reduced.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Harjinder Kaur ◽  
Raghava R. Kommalapati

AbstractAnaerobic co-digestion is widely adopted to enhance process efficacy by balancing the C/N ratio of the feedstock while converting organic wastes to biomethane. Goat manure (GM) and cotton gin trash (CGT) were anaerobically co-digested in triplicate batch bioreactors. The process was optimized and evaluated utilizing mathematical equations. The liquid fraction of the digestate was analyzed for nitrate and phosphate. The co-digestions with 10 and 20% CGT having the C/N ratios of 17.7 and 19.8 yielded the highest and statistically similar 261.4 ± 4.8 and 262.6 ± 4.2 mL/gvs biomethane, respectively. The biodegradability (BD) of GM and CGT was 94.5 ± 2.7 and 37.6 ± 0.8%, respectively. The BD decreased proportionally with an increase in CGT percentage. The co-digestion having 10% CGT yielded 80–90% of biomethane in 26–39 d. The modified Gompertz model-predicted and experimental biomethane values were similar. The highest synergistic effect index of 15.6 ± 4.7% was observed in GM/CGT; 30:70 co-digestion. The concentration of nitrate and phosphate was lower in the liquid fraction of digestate than the feedstocks, indicating that these nutrients stay in the solid fraction. The results provide important insights in agro-waste management, further studies determining the effects of effluent application on plants need to be conducted.


2021 ◽  
Vol 11 (13) ◽  
pp. 6069
Author(s):  
Saadia Meraj ◽  
Rabia Liaquat ◽  
Salman Raza Naqvi ◽  
Zeshan Sheikh ◽  
Atoofa Zainab ◽  
...  

Future energy and environmental issues are the major driving force towards increased global utilization of biomass, especially in developing countries like Pakistan. Lignocellulosic residues are abundant in Pakistan. The present study investigated the best-mixed proportion of mechanically pretreated lignocellulosic residues i.e., wheat straw and rice straw (WSRS), bagasse and wheat straw (BAWS), bagasse, and rice straw (BARS), bagasse, wheat straw, and rice straw (BAWSRS) through anaerobic co-digestion. Anaerobic batch mode bioreactors comprising of lignocellulosic proportions and control bioreactors were run in parallel at mesophilic temperature (35 °C) for the substrate to inoculum (S/I) ratio of 1.5 and 2.5. Maximum and stable biomethane production was observed at the substrate to inoculum (S/I) ratio of 1.5, and the highest biomethane yield 339.0089123 NmLCH4/gVS was achieved by co-digestion of wheat straw and rice straw (WSRS) and lowest 15.74 NmLCH4/gVS from bagasse and rice straw (BARS) at 2.5 substrates to inoculum ratio. Furthermore, anaerobic reactor performance was determined by using bio-kinetic parameters i.e., production rate (Rm), lag phase (λ), and coefficient of determination (R2). The bio-kinetic parameters were evaluated by using kinetic models; first-order kinetics, Logistic function model, Modified Gompertz Model, and Transference function model. Among all kinetic models, the Logistic function model provided the best fit with experimental data followed by Modified Gompertz Model. The study suggests that a decrease in methane production was due to lower hydrolysis rate and higher lignin content of the co-digested substrates, and mechanical pretreatment leads to the breakage of complex lignocellulosic structure. The organic matter degradation evidence will be utilized by the biogas digesters developed in rural areas of Pakistan, where these agricultural residues are ample waste and need a technological solution to manage and produce renewable energy.


Author(s):  
Jun Shi ◽  
Wei Zhao ◽  
Jing Xie ◽  
Yongheng Zhu ◽  
Yingjie Pan ◽  
...  

Vibrio parahaemolyticus is an important food-borne pathogen in aquatic products, which can survive long-term in an oligotrophic environment and maintain pathogenicity. In this study, the growth curves of 38 strains of V.parahaemolyticus (pathogenic and environmental strains) under different oligotrophic conditions (tryptone soy broth (TSB), TSB diluted 2, 4, and 6 times medium) were simulated and their growth heterogeneity was compared. The growth kinetic parameters (maximum specific growth rate ( µ max ) and lag time (LT)) were calculated by the modified Gompertz model. The results showed that oligotrophic conditions affected the growth variability of strains, and the coefficient of variation (CV) of all strains reached the maximum in the 4-fold dilution of TSB. Under different oligotrophic conditions, the LT of the pathogenic strains was shorter than that of the environmental strains, while the µ max of the environmental strains was greater. This indicated that pathogenic strains were more adaptable to the nutrient-deficient environment. The analysis of different genotypes revealed that the strains with genotype tlh + /tdh + /trh − showed a greater growth variability in oligotrophic environments. These results provided theoretical support for the accuracy of the risk assessment of aquatic products.


Author(s):  
Rundong Wang ◽  
Xiaojun Hu ◽  
Yijia Deng ◽  
Ravi Gooneratne

The growth and hemolysin production of two V.   alginolyticus  strains (HY9901 and ATCC17749T) at 30 °C in briny tilapia, shrimp, scallop, oyster, pork, chicken, freshwater fish and egg fried rice were investigated. Bacterial counts were enumerated by plate counting. Hemolysin production was evaluated by blood agar and hemolytic titer tests. The two V.   alginolyticus  strains displayed similar growth and hemolysin production patterns in the foods. Based on the goodness of fit primary model statistics (R 2 , MSE, BF, AF), the modified Gompertz model was a better fit to V.   alginolyticus  growth in foods than the logistic model. Growth kinetic parameters of V.   alginolyticus  displayed a higher μ max and shorter λ in briny tilapia > shrimp > freshwater fish > egg fried rice > scallop > oyster > chicken > pork. It was notable that the V.   alginolyticus  counts were similar at the stationary phase, with no significant growth behavior difference between raw and cooked foods. Significantly higher (p < 0.05) thermostable direct hemolysin (TDH) activity was produced by V.   alginolyticus  in briny tilapia > freshwater fish > shrimp > chicken > egg fried rice > scallop > oyster > pork. But the hemolytic titer was not consistent with the TDH activity, being significantly higher (p < 0.05) in briny tilapia > egg fried rice > shrimp > freshwater fish > chicken > scallop > oyster > pork. Contrary to current belief, V.   alginolyticus  displayed a higher hemolysin production in some non-seafoods (freshwater fish, egg fried rice and chicken) than in scallop or oyster. This is the first report of growth and toxicity of V. alginolyticus  in different food matrices and confirmation that some non-seafood contaminated with V. alginolyticus  can be even more pathogenic. This study will enhance the awareness of non-seafood safety and improve the V.   alginolyticus  risk assessment accuracy.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1952
Author(s):  
Ayobami Orangun ◽  
Harjinder Kaur ◽  
Raghava R. Kommalapati

The improper management of goat manure from concentrated goat feeding operations and food waste leads to the emission of greenhouse gasses and water pollution in the US. The wastes were collected from the International Goat Research Center and a dining facility at Prairie View A&M University. The biochemical methane potential of these two substrates in mono and co-digestion at varied proportions was determined in triplicates and processes were evaluated using two nonlinear regression models. The experiments were conducted at 36 ± 1 °C with an inoculum to substrate ratio of 2.0. The biomethane was measured by water displacement method (pH 10:30), absorbing carbon dioxide. The cumulative yields in goat manure and food waste mono-digestions were 169.7 and 206.0 mL/gVS, respectively. Among co-digestion, 60% goat manure achieved the highest biomethane yields of 380.5 mL/gVS. The biodegradabilities of 33.5 and 65.7% were observed in goat manure and food waste mono-digestions, while 97.4% were observed in the co-digestion having 60% goat manure. The modified Gompertz model is an excellent fit in simulating the anaerobic digestion of food waste and goat manure substrates. These findings provide useful insights into the co-digestion of these substrates.


Sign in / Sign up

Export Citation Format

Share Document