scholarly journals Artificial neural network based PERSIANN data sets in evaluation of hydrologic utility of precipitation estimations in a tropical watershed of Sri Lanka

2021 ◽  
Vol 7 (3) ◽  
pp. 478-489
Author(s):  
Miyuru B Gunathilake ◽  
◽  
Thamashi Senerath ◽  
Upaka Rathnayake ◽  

<abstract> <p>The developments of satellite technologies and remote sensing (RS) have provided a way forward with potential for tremendous progress in estimating precipitation in many regions of the world. These products are especially useful in developing countries and regions, where ground-based rain gauge (RG) networks are either sparse or do not exist. In the present study the hydrologic utility of three satellite-based precipitation products (SbPPs) namely, Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), PERSIANN-Cloud Classification System (PERSIANN-CCS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Dynamic Infrared Rain Rate near real-time (PDIR-NOW) were examined by using them to drive the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) hydrologic model for the Seethawaka watershed, a sub-basin of the Kelani River Basin of Sri Lanka. The hydrologic utility of SbPPs was examined by comparing the outputs of this modelling exercise against observed discharge records at the Deraniyagala streamflow gauging station during two extreme rainfall events from 2016 and 2017. The observed discharges were simulated considerably better by the model when RG data was used to drive it than when these SbPPs. The results demonstrated that PERSIANN family of precipitation products are not capable of producing peak discharges and timing of peaks essential for near-real time flood-forecasting applications in the Seethawaka watershed. The difference in performance is quantified using the Nash-Sutcliffe Efficiency, which was &gt; 0.80 for the model when driven by RGs, and &lt; 0.08 when driven by the SbPPs. Amongst the SbPPs, PERSIANN performed best. The outcomes of this study will provide useful insights and recommendations for future research expected to be carried out in the Seethawaka watershed using SbPPs. The results of this study calls for the refinement of retrieval algorithms in rainfall estimation techniques of PERSIANN family of rainfall products for the tropical region.</p> </abstract>

2019 ◽  
Vol 20 (12) ◽  
pp. 2273-2289 ◽  
Author(s):  
Mojtaba Sadeghi ◽  
Ata Akbari Asanjan ◽  
Mohammad Faridzad ◽  
Phu Nguyen ◽  
Kuolin Hsu ◽  
...  

Abstract Accurate and timely precipitation estimates are critical for monitoring and forecasting natural disasters such as floods. Despite having high-resolution satellite information, precipitation estimation from remotely sensed data still suffers from methodological limitations. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate patterns within large and complex datasets, appear well suited to the task of precipitation estimation, given the ample amount of high-resolution satellite data. In this study, the effectiveness of applying convolutional neural networks (CNNs) together with the infrared (IR) and water vapor (WV) channels from geostationary satellites for estimating precipitation rate is explored. The proposed model performances are evaluated during summer 2012 and 2013 over central CONUS at the spatial resolution of 0.08° and at an hourly time scale. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)–Cloud Classification System (CCS), which is an operational satellite-based product, and PERSIANN–Stacked Denoising Autoencoder (PERSIANN-SDAE) are employed as baseline models. Results demonstrate that the proposed model (PERSIANN-CNN) provides more accurate rainfall estimates compared to the baseline models at various temporal and spatial scales. Specifically, PERSIANN-CNN outperforms PERSIANN-CCS (and PERSIANN-SDAE) by 54% (and 23%) in the critical success index (CSI), demonstrating the detection skills of the model. Furthermore, the root-mean-square error (RMSE) of the rainfall estimates with respect to the National Centers for Environmental Prediction (NCEP) Stage IV gauge–radar data, for PERSIANN-CNN was lower than that of PERSIANN-CCS (PERSIANN-SDAE) by 37% (14%), showing the estimation accuracy of the proposed model.


2021 ◽  
pp. 14-22
Author(s):  
G. N. KAMYSHOVA ◽  

The purpose of the study is to develop new scientific approaches to improve the efficiency of irrigation machines. Modern digital technologies allow the collection of data, their analysis and operational management of equipment and technological processes, often in real time. All this allows, on the one hand, applying new approaches to modeling technical systems and processes (the so-called “data-driven models”), on the other hand, it requires the development of fundamentally new models, which will be based on the methods of artificial intelligence (artificial neural networks, fuzzy logic, machine learning algorithms and etc.).The analysis of the tracks and the actual speeds of the irrigation machines in real time showed their significant deviations in the range from the specified speed, which leads to a deterioration in the irrigation parameters. We have developed an irrigation machine’s control model based on predictive control approaches and the theory of artificial neural networks. Application of the model makes it possible to implement control algorithms with predicting the response of the irrigation machine to the control signal. A diagram of an algorithm for constructing predictive control, a structure of a neuroregulator and tools for its synthesis using modern software are proposed. The versatility of the model makes it possible to use it both to improve the efficiency of management of existing irrigation machines and to develop new ones with integrated intelligent control systems.


2014 ◽  
Vol 33 (6) ◽  
pp. 419-432 ◽  
Author(s):  
Christian von Spreckelsen ◽  
Hans-Jörg von Mettenheim ◽  
Michael H. Breitner

Sign in / Sign up

Export Citation Format

Share Document