scholarly journals Upper paired domination in graphs

2021 ◽  
Vol 7 (1) ◽  
pp. 1185-1197
Author(s):  
Huiqin Jiang ◽  
◽  
Pu Wu ◽  
Jingzhong Zhang ◽  
Yongsheng Rao ◽  
...  

<abstract><p>A set $ PD\subseteq V(G) $ in a graph $ G $ is a paired dominating set if every vertex $ v\notin PD $ is adjacent to a vertex in $ PD $ and the subgraph induced by $ PD $ contains a perfect matching. A paired dominating set $ PD $ of $ G $ is minimal if there is no proper subset $ PD'\subset PD $ which is a paired dominating set of $ G $. A minimal paired dominating set of maximum cardinality is called an upper paired dominating set, denoted by $ \Gamma_{pr}(G) $-set. Denote by $ Upper $-$ PDS $ the problem of computing a $ \Gamma_{pr}(G) $-set for a given graph $ G $. Michael et al. showed the APX-completeness of $ Upper $-$ PDS $ for bipartite graphs with $ \Delta = 4 $ <sup>[<xref ref-type="bibr" rid="b11">11</xref>]</sup>. In this paper, we show that $ Upper $-$ PDS $ is APX-complete for bipartite graphs with $ \Delta = 3 $.</p></abstract>

2020 ◽  
Vol 12 (06) ◽  
pp. 2050072
Author(s):  
A. Mahmoodi ◽  
L. Asgharsharghi

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text]. An outer-paired dominating set [Formula: see text] of a graph [Formula: see text] is a dominating set such that the subgraph induced by [Formula: see text] has a perfect matching. The outer-paired domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of an outer-paired dominating set of [Formula: see text]. In this paper, we study the outer-paired domination number of graphs and present some sharp bounds concerning the invariant. Also, we characterize all the trees with [Formula: see text].


2018 ◽  
Vol 189 ◽  
pp. 03029
Author(s):  
Pannawat Eakawinrujee ◽  
Nantapath Trakultraipruk

A paired dominating set of a graph G = (V(G),E(G)) is a set D of vertices of G such that every vertex is adjacent to some vertex in D, and the subgraph of G induced by D contains a perfect matching. The upper paired domination number of G, denoted by Γpr(G) is the maximum cardinality of a minimal paired dominating set of G. A paired dominatin set of cardinality Γ pr(G) is called a Γpr(G) -set. The Γ -paired dominating graph of G, denoted by ΓPD(G), is the graph whose vertex set is the set of all Γ pr(G) -sets, and two Γpr(G) -sets are adjacentin ΓPD(G) if one can be obtained from the other by removing one vertex and adding another vertex of G. In this paper, we present the Γ-paired dominating graphs of some paths.


2020 ◽  
Vol 39 (6) ◽  
pp. 1627-1647
Author(s):  
X. Lenin Xaviour ◽  
S. Robinson Chellathurai

A set S of vertices in a connected graph G = (V, E) is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A set D of vertices in G is called a dominating set of G if every vertex not in D has at least one neighbor in D. A set D is called a global dominating set in G if S is a dominating set of both G and Ḡ. A set S is called a geodetic global dominating set of G if S is both geodetic and global dominating set of G. A geodetic global dominating set S in G is called a minimal geodetic global dominating set if no proper subset of S is itself a geodetic global dominating set in G. The maximum cardinality of a minimal geodetic global dominating set in G is the upper geodetic global domination number Ῡg+(G) of G. In this paper, the upper geodetic global domination number of certain connected graphs are determined and some of the general properties are studied. It is proved that for all positive integers a, b, p where 3 ≤ a ≤ b < p, there exists a connected graph G such that Ῡg(G) = a, Ῡg+(G) = b and |V (G)| = p.


Author(s):  
Hadi Alizadeh ◽  
Didem Gözüpek

A dominating set in a graph $G=(V,E)$ is a set $S$ such that every vertex of $G$ is either in $S$ or adjacent to a vertex in $S$. While the minimum cardinality of a dominating set in $G$ is called the domination number of $G$ denoted by $\gamma(G)$, the maximum cardinality of a minimal dominating set in $G$ is called the upper domination number of $G$ denoted by $\Gamma(G)$. We call the difference between these two parameters the \textit{domination gap} of $G$ and denote it by $\mu_d(G) = \Gamma(G) - \gamma(G)$. While a graph $G$ with $\mu_d(G)=0$ is said to be a \textit{well-dominated} graph, we call a graph $G$ with $\mu_d(G)=1$ an \textit{almost well-dominated} graph. In this work, we first establish an upper bound for the cardinality of bipartite graphs with $\mu_d(G)=k$, where $k\geq1$, and minimum degree at least two. We then provide a complete structural characterization of almost well-dominated bipartite graphs with minimum degree at least two. While the results by Finbow et al.~\cite{domination} imply that a 4-cycle is the only well-dominated bipartite graph with minimum degree at least two, we prove in this paper that there exist precisely 31 almost well-dominated bipartite graphs with minimum degree at least two.


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Hadi Alizadeh ◽  
Didem Gözüpek

A paired dominating set $P$ is a dominating set with the additional property that $P$ has a perfect matching. While the maximum cardainality of a minimal dominating set in a graph $G$ is called the upper domination number of $G$, denoted by $\Gamma(G)$, the maximum cardinality of a minimal paired dominating set in $G$ is called the upper paired domination number of $G$, denoted by $\Gamma_{pr}(G)$. By Henning and Pradhan (2019), we know that $\Gamma_{pr}(G)\leq 2\Gamma(G)$ for any graph $G$ without isolated vertices. We focus on the graphs satisfying the equality $\Gamma_{pr}(G)= 2\Gamma(G)$. We give characterizations for two special graph classes: bipartite and unicyclic graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ by using the results of Ulatowski (2015). Besides, we study the graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and a restricted girth. In this context, we provide two characterizations: one for graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and girth at least 6 and the other for $C_3$-free cactus graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$. We also pose the characterization of the general case of $C_3$-free graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ as an open question.


2021 ◽  
Vol 14 (2) ◽  
pp. 537-550
Author(s):  
Hearty Nuenay Maglanque ◽  
Ferdinand P. Jamil

Given a connected graph $G$, we say that $S\subseteq V(G)$ is a cost effective dominating set in $G$ if, each vertex in $S$ is adjacent to at least as many vertices outside $S$ as inside $S$ and that every vertex outside $S$ is adjacent to at least one vertex in $S$. The minimum cardinality of a cost effective dominating set is the cost effective domination number of $G$. The maximum cardinality of a cost effective dominating set is the upper cost effective domination number of $G$, and is denoted by $\gamma_{ce}^+(G).$ A cost effective dominating set is said to be minimal if it does not contain a proper subset which is itself a cost effective dominating in $G$. The maximum cardinality of a minimal cost effective dominating set in a graph $G$ is the minimal cost effective domination number of $G$, and is denoted by $\gamma_{mce}(G)$. In this paper we provide bounds on upper cost effective domination number and minimal cost effective domination number of a connected graph G and characterized those graphs whose upper and minimal cost effective domination numbers are either $1, 2$ or $n-1.$ We also establish a Nordhaus-Gaddum type result for the introduced parameters and solve some realization problems.


Filomat ◽  
2014 ◽  
Vol 28 (3) ◽  
pp. 523-529 ◽  
Author(s):  
Nasrin Dehgardi ◽  
Seyed Sheikholeslami ◽  
Abdollah Khodkar

A paired-dominating set of a graph G=(V, E) with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G, denoted by ?pr(G), is the minimum cardinality of a paired-dominating set of G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we prove that for any tree T of order n?2,?pr(T)? 4a(T)+2/3 and we characterize the trees achieving this bound.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050076 ◽  
Author(s):  
Manal N. Al-Harere ◽  
Ahmed A. Omran ◽  
Athraa T. Breesam

In this paper, a new definition of graph domination called “Captive Domination” is introduced. The proper subset of the vertices of a graph [Formula: see text] is a captive dominating set if it is a total dominating set and each vertex in this set dominates at least one vertex which doesn’t belong to the dominating set. The inverse captive domination is also introduced. The lower and upper bounds for the number of edges of the graph are presented by using the captive domination number. Moreover, the lower and upper bounds for the captive domination number are found by using the number of vertices. The condition when the total domination and captive domination number are equal to two is discussed and obtained results. The captive domination in complement graphs is discussed. Finally, the captive dominating set of paths and cycles are determined.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1135
Author(s):  
Shouliu Wei ◽  
Guoliang Hao ◽  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar ◽  
Hossein Karami

A paired-dominating set of a graph G without isolated vertices is a dominating set of vertices whose induced subgraph has perfect matching. The minimum cardinality of a paired-dominating set of G is called the paired-domination number γpr(G) of G. The paired-domination subdivision number sdγpr(G) of G is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the paired-domination number. Here, we show that, for each tree T≠P5 of order n≥3 and each edge e∉E(T), sdγpr(T)+sdγpr(T+e)≤n+2.


2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


Sign in / Sign up

Export Citation Format

Share Document