scholarly journals Bounding the paired-domination number of a tree in terms of its annihilation number

Filomat ◽  
2014 ◽  
Vol 28 (3) ◽  
pp. 523-529 ◽  
Author(s):  
Nasrin Dehgardi ◽  
Seyed Sheikholeslami ◽  
Abdollah Khodkar

A paired-dominating set of a graph G=(V, E) with no isolated vertex is a dominating set of vertices whose induced subgraph has a perfect matching. The paired-domination number of G, denoted by ?pr(G), is the minimum cardinality of a paired-dominating set of G. The annihilation number a(G) is the largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most the number of edges in G. In this paper, we prove that for any tree T of order n?2,?pr(T)? 4a(T)+2/3 and we characterize the trees achieving this bound.

Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1135
Author(s):  
Shouliu Wei ◽  
Guoliang Hao ◽  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar ◽  
Hossein Karami

A paired-dominating set of a graph G without isolated vertices is a dominating set of vertices whose induced subgraph has perfect matching. The minimum cardinality of a paired-dominating set of G is called the paired-domination number γpr(G) of G. The paired-domination subdivision number sdγpr(G) of G is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the paired-domination number. Here, we show that, for each tree T≠P5 of order n≥3 and each edge e∉E(T), sdγpr(T)+sdγpr(T+e)≤n+2.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050072
Author(s):  
A. Mahmoodi ◽  
L. Asgharsharghi

Let [Formula: see text] be a simple graph with vertex set [Formula: see text] and edge set [Formula: see text]. An outer-paired dominating set [Formula: see text] of a graph [Formula: see text] is a dominating set such that the subgraph induced by [Formula: see text] has a perfect matching. The outer-paired domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of an outer-paired dominating set of [Formula: see text]. In this paper, we study the outer-paired domination number of graphs and present some sharp bounds concerning the invariant. Also, we characterize all the trees with [Formula: see text].


2021 ◽  
Vol vol. 23, no. 3 (Graph Theory) ◽  
Author(s):  
Hadi Alizadeh ◽  
Didem Gözüpek

A paired dominating set $P$ is a dominating set with the additional property that $P$ has a perfect matching. While the maximum cardainality of a minimal dominating set in a graph $G$ is called the upper domination number of $G$, denoted by $\Gamma(G)$, the maximum cardinality of a minimal paired dominating set in $G$ is called the upper paired domination number of $G$, denoted by $\Gamma_{pr}(G)$. By Henning and Pradhan (2019), we know that $\Gamma_{pr}(G)\leq 2\Gamma(G)$ for any graph $G$ without isolated vertices. We focus on the graphs satisfying the equality $\Gamma_{pr}(G)= 2\Gamma(G)$. We give characterizations for two special graph classes: bipartite and unicyclic graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ by using the results of Ulatowski (2015). Besides, we study the graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and a restricted girth. In this context, we provide two characterizations: one for graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and girth at least 6 and the other for $C_3$-free cactus graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$. We also pose the characterization of the general case of $C_3$-free graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ as an open question.


2018 ◽  
Vol 189 ◽  
pp. 03029
Author(s):  
Pannawat Eakawinrujee ◽  
Nantapath Trakultraipruk

A paired dominating set of a graph G = (V(G),E(G)) is a set D of vertices of G such that every vertex is adjacent to some vertex in D, and the subgraph of G induced by D contains a perfect matching. The upper paired domination number of G, denoted by Γpr(G) is the maximum cardinality of a minimal paired dominating set of G. A paired dominatin set of cardinality Γ pr(G) is called a Γpr(G) -set. The Γ -paired dominating graph of G, denoted by ΓPD(G), is the graph whose vertex set is the set of all Γ pr(G) -sets, and two Γpr(G) -sets are adjacentin ΓPD(G) if one can be obtained from the other by removing one vertex and adding another vertex of G. In this paper, we present the Γ-paired dominating graphs of some paths.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050065
Author(s):  
Davood Bakhshesh

Let [Formula: see text] be a simple and undirected graph with vertex set [Formula: see text]. A set [Formula: see text] is called a dominating set of [Formula: see text], if every vertex in [Formula: see text] is adjacent to at least one vertex in [Formula: see text]. The minimum cardinality of a dominating set of [Formula: see text] is called the domination number of [Formula: see text], denoted by [Formula: see text]. A dominating set [Formula: see text] of [Formula: see text] is called isolate dominating, if the induced subgraph [Formula: see text] of [Formula: see text] contains at least one isolated vertex. The minimum cardinality of an isolate dominating set of [Formula: see text] is called the isolate domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we show that for every proper interval graph [Formula: see text], [Formula: see text]. Moreover, we provide a constructive characterization for trees with equal domination number and isolate domination number. These solve part of an open problem posed by Hamid and Balamurugan [Isolate domination in graphs, Arab J. Math. Sci. 22(2) (2016) 232–241].


2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750009 ◽  
Author(s):  
Eunjeong Yi

Let [Formula: see text] be a graph with vertex set [Formula: see text] and edge set [Formula: see text]. If [Formula: see text] has no isolated vertex, then a disjunctive total dominating set (DTD-set) of [Formula: see text] is a vertex set [Formula: see text] such that every vertex in [Formula: see text] is adjacent to a vertex of [Formula: see text] or has at least two vertices in [Formula: see text] at distance two from it, and the disjunctive total domination number [Formula: see text] of [Formula: see text] is the minimum cardinality overall DTD-sets of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be two disjoint copies of a graph [Formula: see text], and let [Formula: see text] be a bijection. Then, a permutation graph [Formula: see text] has the vertex set [Formula: see text] and the edge set [Formula: see text]. For any connected graph [Formula: see text] of order at least three, we prove the sharp bounds [Formula: see text]; we give an example showing that [Formula: see text] can be arbitrarily large. We characterize permutation graphs for which [Formula: see text] holds. Further, we show that [Formula: see text] when [Formula: see text] is a cycle, a path, and a complete [Formula: see text]-partite graph, respectively.


10.37236/1085 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $M$ of edges of a graph $G$ is a matching if no two edges in $M$ are incident to the same vertex. The matching number of $G$ is the maximum cardinality of a matching of $G$. A set $S$ of vertices in $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. If $G$ does not contain $K_{1,3}$ as an induced subgraph, then $G$ is said to be claw-free. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. In this paper, we use transversals in hypergraphs to characterize connected claw-free graphs with minimum degree at least three that have equal total domination and matching numbers.


Author(s):  
Purnima Gupta ◽  
Deepti Jain

In a graph [Formula: see text], a set [Formula: see text] is a [Formula: see text]-point set dominating set (in short 2-psd set) of [Formula: see text] if for every subset [Formula: see text] there exists a nonempty subset [Formula: see text] containing at most two vertices such that the induced subgraph [Formula: see text] is connected in [Formula: see text]. The [Formula: see text]-point set domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of a 2-psd set of [Formula: see text]. The main focus of this paper is to find the value of [Formula: see text] for a separable graph and thereafter computing [Formula: see text] for some well-known classes of separable graphs. Further we classify the set of all 2-psd sets of a separable graph into six disjoint classes and study the existence of minimum 2-psd sets in each class.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
K. Suriya Prabha ◽  
S. Amutha ◽  
N. Anbazhagan ◽  
Ismail Naci Cangul

A set S ⊆ V of a graph G = V , E is called a co-independent liar’s dominating set of G if (i) for all v ∈ V , N G v ∩ S ≥ 2 , (ii) for every pair u , v ∈ V of distinct vertices, N G u ∪ N G v ∩ S ≥ 3 , and (iii) the induced subgraph of G on V − S has no edge. The minimum cardinality of vertices in such a set is called the co-independent liar’s domination number of G , and it is denoted by γ coi L R G . In this paper, we introduce the concept of co-independent liar’s domination number of the middle graph of some standard graphs such as path and cycle graphs, and we propose some bounds on this new parameter.


Sign in / Sign up

Export Citation Format

Share Document