scholarly journals Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation

2021 ◽  
Vol 7 (4) ◽  
pp. 5029-5048
Author(s):  
Anli Wei ◽  
◽  
Ying Li ◽  
Wenxv Ding ◽  
Jianli Zhao ◽  
...  

<abstract><p>In this paper, we propose an efficient method for some special solutions of the quaternion matrix equation $ AXB+CYD = E $. By integrating real representation of a quaternion matrix with $ \mathcal{H} $-representation, we investigate the minimal norm least squares solution of the previous quaternion matrix equation over different constrained matrices and obtain their expressions. In this way, we first apply $ \mathcal{H} $-representation to solve quaternion matrix equation with special structure, which not only broadens the application scope of $ \mathcal{H} $-representation, but further expands the research idea of solving quaternion matrix equation. The algorithms only include real operations. Consequently, it is very simple and convenient, and it can be applied to all kinds of quaternion matrix equation with similar problems. The numerical example is provided to illustrate the feasibility of our algorithms.</p></abstract>

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ivan I. Kyrchei

In this paper, we derive explicit determinantal representation formulas of general, Hermitian, and skew-Hermitian solutions to the generalized Sylvester matrix equation involving ⁎-Hermicity AXA⁎+BYB⁎=C over the quaternion skew field within the framework of the theory of noncommutative column-row determinants.


2021 ◽  
Vol 6 (12) ◽  
pp. 13247-13257
Author(s):  
Dong Wang ◽  
◽  
Ying Li ◽  
Wenxv Ding

<abstract><p>In this paper, the idea of partitioning is used to solve quaternion least squares problem, we divide the quaternion Bisymmetric matrix into four blocks and study the relationship between the block matrices. Applying this relation, the real representation of quaternion, and M-P inverse, we obtain the least squares Bisymmetric solution of quaternion matrix equation $ AXB = C $ and its compatable conditions. Finally, we verify the effectiveness of the method through numerical examples.</p></abstract>


Filomat ◽  
2019 ◽  
Vol 33 (13) ◽  
pp. 4261-4280 ◽  
Author(s):  
Bogdan Djordjevic ◽  
Nebojsa Dincic

In this paperwesolve Sylvester matrix equation with infinitely-many solutions and conduct their classification. If the conditions for their existence are not met, we provide a way for their approximation by least-squares minimal-norm method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Caiqin Song ◽  
Jun-e Feng ◽  
Xiaodong Wang ◽  
Jianli Zhao

A new approach is presented for obtaining the solutions to Yakubovich-j-conjugate quaternion matrix equationX−AX^B=CYbased on the real representation of a quaternion matrix. Compared to the existing results, there are no requirements on the coefficient matrixA. The closed form solution is established and the equivalent form of solution is given for this Yakubovich-j-conjugate quaternion matrix equation. Moreover, the existence of solution to complex conjugate matrix equationX−AX¯B=CYis also characterized and the solution is derived in an explicit form by means of real representation of a complex matrix. Actually, Yakubovich-conjugate matrix equation over complex field is a special case of Yakubovich-j-conjugate quaternion matrix equationX−AX^B=CY. Numerical example shows the effectiveness of the proposed results.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shi-Fang Yuan

Using the Kronecker product of matrices, the Moore-Penrose generalized inverse, and the complex representation of quaternion matrices, we derive the expressions of least squares solution with the least norm, least squares pure imaginary solution with the least norm, and least squares real solution with the least norm of the quaternion matrix equationAXB+CXD=E, respectively.


Filomat ◽  
2014 ◽  
Vol 28 (6) ◽  
pp. 1153-1165 ◽  
Author(s):  
Shi-Fang Yuan ◽  
Qing-Wen Wang ◽  
Zhi-Ping Xiong

For any A=A1+A2j?Qnxn and ?? {i,j,k} denote A?H = -?AH?. If A?H = A,A is called an ?-Hermitian matrix. If A?H =-A,A is called an ?-anti-Hermitian matrix. Denote ?-Hermitian matrices and ?-anti-Hermitian matrices by ?HQnxn and ?AQnxn, respectively. In this paper, we consider the least squares ?-Hermitian problems of quaternion matrix equation AHXA+ BHYB = C by using the complex representation of quaternion matrices, the Moore-Penrose generalized inverse and the Kronecker product of matrices. We derive the expressions of the least squares solution with the least norm of quaternion matrix equation AHXA + BHYB = C over [X,Y] ? ?HQnxn x ?HQkxk, [X,Y] ? ?AQnxn x ?AQkxk, and [X,Y] ? ?HQnxn x ?AQkxk, respectively.


2011 ◽  
Vol 50-51 ◽  
pp. 190-194 ◽  
Author(s):  
Shi Fang Yuan ◽  
Han Dong Cao

In this paper, by using the Kronecker product of matrices and the complex representation of quaternion matrices, we discuss the special structure of quaternion skew bisymmetric matrices, and derive the expression of the least squares skew bisymmetric solution of the quaternion matrix equation AXB =C with the least norm.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Liu ◽  
Huajun Huang ◽  
Zhuo-Heng He

For a quaternion matrix A, we denote by Aϕ the matrix obtained by applying ϕ entrywise to the transposed matrix AT, where ϕ is a nonstandard involution of quaternions. A is said to be ϕ-Hermitian or ϕ-skew-Hermitian if A=Aϕ or A=−Aϕ, respectively. In this paper, we give a complete characterization of the nonstandard involutions ϕ of quaternions and their conjugacy properties; then we establish a new real representation of a quaternion matrix. Based on this, we derive some necessary and sufficient conditions for the existence of a ϕ-Hermitian solution or ϕ-skew-Hermitian solution to the quaternion matrix equation AX=B. Moreover, we give solutions of the quaternion equation when it is solvable.


Sign in / Sign up

Export Citation Format

Share Document