scholarly journals Quadratic order conditions for bang-singular extremals

2012 ◽  
Vol 2 (3) ◽  
pp. 511-546 ◽  
Author(s):  
M. Aronna ◽  
J. Bonnans ◽  
Andrei Dmitruk ◽  
Pablo Lotito
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jens O. Andersen ◽  
Magdalena Eriksson ◽  
Anders Tranberg

Abstract Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified with the expectation value of a quantum field, evolving in a quantum effective potential. The shape of this potential is determined by the underlying tree-level potential, dressed by quantum corrections from the scalar field itself and the metric perturbations. Following [1], we compute the effective scalar field equations and the corrected Friedmann equations to quadratic order in both scalar field, scalar metric and tensor perturbations. We identify the quantum corrections from different sources at leading order in slow-roll, and estimate their magnitude in benchmark models of inflation. We comment on the implications of non-minimal coupling to gravity in this context.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wesley Fussner ◽  
Mai Gehrke ◽  
Samuel J. van Gool ◽  
Vincenzo Marra

Abstract We provide a new perspective on extended Priestley duality for a large class of distributive lattices equipped with binary double quasioperators. Under this approach, non-lattice binary operations are each presented as a pair of partial binary operations on dual spaces. In this enriched environment, equational conditions on the algebraic side of the duality may more often be rendered as first-order conditions on dual spaces. In particular, we specialize our general results to the variety of MV-algebras, obtaining a duality for these in which the equations axiomatizing MV-algebras are dualized as first-order conditions.


Author(s):  
Adrien Laurent ◽  
Gilles Vilmart

AbstractWe derive a new methodology for the construction of high-order integrators for sampling the invariant measure of ergodic stochastic differential equations with dynamics constrained on a manifold. We obtain the order conditions for sampling the invariant measure for a class of Runge–Kutta methods applied to the constrained overdamped Langevin equation. The analysis is valid for arbitrarily high order and relies on an extension of the exotic aromatic Butcher-series formalism. To illustrate the methodology, a method of order two is introduced, and numerical experiments on the sphere, the torus and the special linear group confirm the theoretical findings.


Author(s):  
Caroline Khan ◽  
Mike G. Tsionas

AbstractIn this paper, we propose the use of stochastic frontier models to impose theoretical regularity constraints (like monotonicity and concavity) on flexible functional forms. These constraints take the form of inequalities involving the data and the parameters of the model. We address a major concern when statistically endogenous variables are present in these inequalities. We present results with and without endogeneity in the inequality constraints. In the system case (e.g., cost-share equations) or more generally, in production function-first-order conditions case, we detect an econometric problem which we solve successfully. We provide an empirical application to US electric power generation plants during 1986–1997, previously used by several authors.


2020 ◽  
Vol 15 (1) ◽  
pp. 4-17
Author(s):  
Jean-François Biasse ◽  
Xavier Bonnetain ◽  
Benjamin Pring ◽  
André Schrottenloher ◽  
William Youmans

AbstractWe propose a heuristic algorithm to solve the underlying hard problem of the CSIDH cryptosystem (and other isogeny-based cryptosystems using elliptic curves with endomorphism ring isomorphic to an imaginary quadratic order 𝒪). Let Δ = Disc(𝒪) (in CSIDH, Δ = −4p for p the security parameter). Let 0 < α < 1/2, our algorithm requires:A classical circuit of size $2^{\tilde{O}\left(\log(|\Delta|)^{1-\alpha}\right)}.$A quantum circuit of size $2^{\tilde{O}\left(\log(|\Delta|)^{\alpha}\right)}.$Polynomial classical and quantum memory.Essentially, we propose to reduce the size of the quantum circuit below the state-of-the-art complexity $2^{\tilde{O}\left(\log(|\Delta|)^{1/2}\right)}$ at the cost of increasing the classical circuit-size required. The required classical circuit remains subexponential, which is a superpolynomial improvement over the classical state-of-the-art exponential solutions to these problems. Our method requires polynomial memory, both classical and quantum.


1977 ◽  
Vol 16 (2) ◽  
pp. 279-295 ◽  
Author(s):  
M.J. Field

Let G be a compact Lie group and V and W be linear G spaces. A study is made of the canonical stratification of some algebraic varieties that arise naturally in the theory of C∞ equivariant maps from V to W. The main corollary of our results is the equivalence of Bierstone's concept of “equivariant general position” with our own of “G transversal”. The paper concludes with a description of Bierstone's higher order conditions for equivariant maps in the framework of equisingularity sequences.


1994 ◽  
pp. 87-97
Author(s):  
J. M. Sanz-Serna ◽  
M. P. Calvo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document