Effect of co-doping and tri-doping with transition metals and a nonmetal on photocatalytic activity in visible light of TiO2 thin film

2017 ◽  
Vol 70 (11) ◽  
pp. 995-1000 ◽  
Author(s):  
Hang Nguyen Thai Phung ◽  
Van Nguyen Khanh Tran ◽  
Phuong Ai Duong ◽  
Hung Vu Tuan Le ◽  
Nguyen Duc Truong
2020 ◽  
Vol 389 ◽  
pp. 125613 ◽  
Author(s):  
Salih Veziroglu ◽  
Marie Ullrich ◽  
Majid Hussain ◽  
Jonas Drewes ◽  
Josiah Shondo ◽  
...  

2015 ◽  
Vol 1806 ◽  
pp. 19-24 ◽  
Author(s):  
John E. Mathis

ABSTRACTThere is great interest in improving TiO2’s photocatalytic activity in the visible portion of electromagnetic spectrum. Recent work has shown that co-doping mesoporous TiO2 microparticles with a transition metal and nitrogen, hereby designated as (M,N) TiO2, significantly increases its visible light absorption. However, the hydrothermal method used to produce the microparticles creates a wide distribution in the size of the microparticles, which could affect the absorption properties. Recently, it has become possible to produce monodisperse, mesoporous TiO2 microparticles with engineered sizes using a hybrid sol-gel/hydrothermal technique. Further, it has also been shown that the size of monodisperse TiO2 microparticles affects the the photocatalytic activity.This study investigated whether using mondodisperse (M,N) TiO2 microparticles would further increase visible-light absorption for (M,N)TiO2. The first-row transition metals chosen for this study - Mn, Fe, Co, Ni, and Cu – have been characterized in the earlier (M,N) TiO2 UV-vis study, which was used as a baseline. The doping levels of the transition metals samples were set at the 2.5 percent level previously shown to be optimum for photocatalytic activity.


2007 ◽  
Vol 120 (2) ◽  
pp. 133-138 ◽  
Author(s):  
Masaaki Kitano ◽  
Masato Takeuchi ◽  
Masaya Matsuoka ◽  
John M. Thomas ◽  
Masakazu Anpo

2020 ◽  
Vol 7 (12) ◽  
pp. 2343-2351
Author(s):  
Ran Wang ◽  
Guoan Lin ◽  
Xiaoxiang Xu

La/Zr co-doping preserves visible light absorption of SrTaO2N, prohibits the formation of defects, improves surface hydrophilicity and charge separation conditions, all of which contribute to an enhanced photocatalytic activity for water reduction.


2008 ◽  
Vol 8 (5) ◽  
pp. 2699-2702 ◽  
Author(s):  
K. S. Yao ◽  
D. Y. Wang ◽  
C. Y. Chang ◽  
W. Y. Ho ◽  
L. Y. Yang

In this study, a novel porphyrin dye, 5, 10, 15, 20-tetraphenyl-21H, 23H-porphine nickel (TPPN) doped TiO2 (TiO2/TPPN) thin film with visible light respondency was prepared using a sol–gel method and characterized with XRD, SEM, UV-Vis instruments. The observation showed that the absorption edge of TPPN dye-doped thin film shifted into the visible light region. The photocatalytic indigo carmine degradation results showed that under visible light irradiation (λ > 400 nm) for 6 hrs, the photocatalytic activity of TiO2 thin film sensitized with 200 μM of TPPN dye showed the best performance, with an indigo degradation ratio up to 96%. Moreover, the TiO2/TPPN thin film showed a relevant photocatalytic bactericidal effect on Erwinia carotovora subsp. carotovora 7 induced vegetable soft rot disease in the visible spectral region. Evidence for the photocatalytic disinfection technique against a plant pathogen under visible light irradiation will have potential for direct application in future control of plant diseases in irrigation water systems.


2011 ◽  
Vol 239-242 ◽  
pp. 1923-1928
Author(s):  
Qian Lin Chen ◽  
Yuan Wang ◽  
Chun Yan Zhong ◽  
Yu Guo

La3+/halogen (F-, Cl-and Br-) co-doped TiO2was synthesized by alkoxide hydrolysis method. The prepared La3+/halogen TiO2photocatalysts with anatase phases and rutile phases were characterized with XRD, EDS, TEM and surface area analytic technology. Methyl orange was used as model pollutants to evaluate its visible light photocatalytic activity. The results showed that the co-doping of La3+and halogen ions improved the surface area of TiO2. Compared with 450°C and 650°C, La3+/Cl-and La3+/Br-co-doped TiO2calcined at 550°C exhibited much higher photocatalytic activity. The optimal doping ratio of La3+/F-, La3+/Cl-and La3+/Br-was 0.4, 0.6, and 0.5 ((wt%)/(wt%)), respectively. Moreover, the degradation ratio of methyl orange on La3+/halogen co-doped TiO2with the optimal ratio were all higher than the maximum degradation ratio on La3+, F-, Cl-and Br-doped TiO2prepared by the same method.


Sign in / Sign up

Export Citation Format

Share Document