Measurement of the Optical and the Physical Parameters in a LAB-based Liquid Scintillator for a Reactor Neutrino Experiment

2014 ◽  
Vol 64 (8) ◽  
pp. 811-814
Author(s):  
Sun Heang SO ◽  
Kyung Kwang JOO
2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Angel Abusleme ◽  
Thomas Adam ◽  
Shakeel Ahmad ◽  
Rizwan Ahmed ◽  
Sebastiano Aiello ◽  
...  

AbstractThe OSIRIS detector is a subsystem of the liquid scintillator filling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $$10^{-16}\hbox { g/g}$$ 10 - 16 g/g of $$^{238}\hbox {U}$$ 238 U and $$^{232}\hbox {Th}$$ 232 Th requires a large ($$\sim 20\,\hbox {m}^3$$ ∼ 20 m 3 ) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Baobiao Yue ◽  
Jiajun Liao ◽  
Jiajie Ling

Abstract Neutrino magnetic moment (νMM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the XENON1T collaboration might indicate a ∼ 2.2 × 10−11μB effective neutrino magnetic moment ($$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff ) from solar neutrinos. Therefore, it is essential to carry out the νMM searches at a different experiment to confirm or exclude such a hypothesis. We study the feasibility of doing νMM measurement with 4 kton fiducial mass at Jinping neutrino experiment (Jinping) using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff can reach < 1.2 × 10−11μB at 90% C.L. with 10-year data taking of solar neutrinos. Besides the abundance of the intrinsic low energy background 14C and 85Kr in the liquid scintillator, we find the sensitivity to νMM is highly correlated with the systematic uncertainties of pp and 85Kr. Reducing systematic uncertainties (pp and 85Kr) and the intrinsic background (14C and 85Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source 51Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($$ {\mu}_{\nu_e} $$ μ ν e ) with < 1.1 × 10−11μB at 90% C.L. . With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.


2012 ◽  
Vol 396 (2) ◽  
pp. 022061 ◽  
Author(s):  
Qingmin Zhang ◽  
Miao He ◽  
Jilei Xu ◽  
Jiaheng Zou ◽  
Zhe Ning ◽  
...  

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
V. V. Vien ◽  
H. N. Long ◽  
A. E. Cárcamo Hernández

Abstract We propose a renormalizable $$B-L$$B-L Standard Model (SM) extension based on $$S_3$$S3 symmetry which successfully accommodates the observed fermion mass spectra and flavor mixing patterns as well as the CP violating phases. The small masses for the light active neutrinos are generated through a type I seesaw mechanism. The obtained physical parameters in the lepton sector are well consistent with the global fit of neutrino oscillations (Esteban et al. in J High Energy Phys 01:106, 2019) for both normal and inverted neutrino mass orderings. The model also predicts effective neutrino mass parameters of $${\langle m_{ee}\rangle }= {1.02\times 10^{-2}}\,{\mathrm {eV}},\, m_{\beta }= {1.25}\times 10^{-2}\,{\mathrm {eV}}$$⟨mee⟩=1.02×10-2eV,mβ=1.25×10-2eV for normal hierarchy (NH) and $${\langle m_{ee}\rangle } ={5.03}\times 10^{-2}\, {\mathrm {eV}},\, m_{\beta } ={5.05}\times 10^{-2}\, {\mathrm {eV}}$$⟨mee⟩=5.03×10-2eV,mβ=5.05×10-2eV for inverted hierarchy (IH) which are all well consistent with the future large and ultra-low background liquid scintillator detectors which has been discussed in Ref. (Zhao et al. in Chin Phys C 41(5):053001, 2017) or the limit of the effective neutrino mass can be reached by the planning of future experiments. The model results are consistent with and successfully accommodate the recent experimental values of the physical observables of the quark sector, including the six quark masses, the quark mixing angles and the CP violating phase in the quark sector.


2015 ◽  
Vol 5 ◽  
pp. 127-135 ◽  
Author(s):  
J. Wilhelmi ◽  
R. Bopp ◽  
R. Brown ◽  
J. Cherwinka ◽  
J. Cummings ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document