Design of an Optical System for a Medium Luminous-Intensity Aircraft-Warning Light Using a LED Light Source and a Fresnel Lens

2018 ◽  
Vol 68 (11) ◽  
pp. 1268-1274
Author(s):  
Hyeon Joon PARK ◽  
Seong Won CHOI ◽  
Jong Tae KIM*
2021 ◽  
Vol 11 (9) ◽  
pp. 4035
Author(s):  
Jinsheon Kim ◽  
Jeungmo Kang ◽  
Woojin Jang

In the case of light-emitting diode (LED) seaport luminaires, they should be designed in consideration of glare, average illuminance, and overall uniformity. Although it is possible to implement light distribution through auxiliary devices such as reflectors, it means increasing the weight and size of the luminaire, which reduces the feasibility. Considering the special environment of seaport luminaires, which are installed at a height of 30 m or more, it is necessary to reduce the weight of the device, facilitate replacement, and secure a light source with a long life. In this paper, an optimized lens design was investigated to provide uniform light distribution to meet the requirement in the seaport lighting application. Four types of lens were designed and fabricated to verify the uniform light distribution requirement for the seaport lighting application. Using numerical analysis, we optimized the lens that provides the required minimum overall uniformity for the seaport lighting application. A theoretical analysis for the heatsink structure and shape were conducted to reduce the heat from the high-power LED light sources up to 250 W. As a result of these analyses on the heat dissipation characteristics of the high-power LED light source used in the LED seaport luminaire, the heatsink with hexagonal-shape fins shows the best heat dissipation effect. Finally, a prototype LED seaport luminaire with an optimized lens and heat sink was fabricated and tested in a real seaport environment. The light distribution characteristics of this prototype LED seaport luminaire were compared with a commercial high-pressure sodium luminaire and metal halide luminaire.


2009 ◽  
Vol 16 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Md. Monirul Haque ◽  
Hironari Yamada ◽  
Ahsa Moon ◽  
Mami Yamada

The performance of the far-infrared (FIR) beamline of the 6 MeV tabletop synchrotron light source MIRRORCLE-6FIR dedicated to far-infrared spectroscopy is presented. MIRRORCLE-6FIR is equipped with a perfectly circular optical system (PhSR) placed around the 1 m-long circumference electron orbit. To illustrate the facility of this light source, the FIR output as well as its spectra were measured. The optimum optical system was designed by using the ray-tracing simulation code ZEMAX. The measured FIR intensity with the PhSR in place is about five times higher than that without the PhSR, which is in good agreement with the simulation results. The MIRRORCLE-6FIR spectral flux is compared with a standard thermal source and is found to be 1000 times greater than that from a typical thermal source at ∼15 cm−1. It is also observed that the MIRRORCLE-6FIR radiation has a highly coherent nature. The broadband infrared allows the facility to reach the spectral range from 10 cm−1 to 100 cm−1. MIRRORCLE-6FIR, owing to a large beam current, the PhSR mirror system, a large dynamic aperture and small ring energy, can deliver a bright flux of photons in the FIR/THz region useful for broadband spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document