Integrated Management of Sugarcane Aphid, Melanaphis sacchari (Hemiptera: Aphididae), on Sorghum on the Texas High Plains

2019 ◽  
Vol 44 (4) ◽  
pp. 825
Author(s):  
Abdul Hakeem ◽  
Megha Parajulee
HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 268B-268
Author(s):  
David A. Bender ◽  
William P. Morrison

Indian mustard trap crops have successfully reduced pesticide use on commercial cabbage in India. Diamondback moth has been a serious pest of cabbage in Texas and has demonstrated resistance to most classes of insecticides. Use of a trap crop could fit well in an integrated management program for cabbage insects, Three-row plots of spring and fall cabbage were surrounded by successive single-row plantings of Indian mustard in trials at Lubbock, Texas to determine the efficacy of interplanting for reducing insecticide applications. Insects in the cabbage and Indian mustard were counted twice weekly, and insecticides were applied selectively when economic thresholds were reached. Indian mustard was highly attractive to harlequin bugs, and protected intercropped spring cabbage. Cabbage plots without mustard required two insecticide applications to control the infestation. False chinch bugs were also highly attracted to Indian mustard. Lepidopterous larvae, including diamondback moth, did not appear to be attracted to the trap crop. Indian mustard trap crops reduced insecticide applications to spring cabbage but had no positive effect on fail cabbage.


2020 ◽  
Vol 113 (4) ◽  
pp. 1850-1857
Author(s):  
B E Wilson ◽  
F P F Reay-Jones ◽  
L Lama ◽  
M Mulcahy ◽  
T E Reagan ◽  
...  

Abstract The sugarcane aphid, Melanaphis sacchari Zehntner, is an economically damaging pest of sorghum, Sorghum bicolor (L.), across the southern United States. Field experiments investigated impacts of sorghum cultivar, nitrogen fertilization, and insecticides on M. sacchari infestations and sorghum yields in Louisiana and South Carolina in 2017 and 2018. In South Carolina, M. sacchari densities in unprotected plots peaked on 30–31 July of both years before declining by early- to mid-August. In Louisiana, infestations peaked on 26 and 12 July for 2017 and 2018, respectively, and declined by mid-August. Nitrogen fertilization influenced M. sacchari densities in Louisiana in 2018 with the highest-level infestations recorded from plots that received high N rates. Densities of M. sacchari on susceptible sorghum cultivar, DKS 38-88, were 1.5- to 2.3-fold greater than on DKS 37-07 in both years in Louisiana and in 2018 in South Carolina. Nitrogen fertilization was associated with improved sorghum yields in Louisiana experiments. Sorghum yields across experiments were 2- to 4-fold greater in plots protected with multiple insecticide applications than in unprotected plots. Yield from plots with insecticides sprayed once at currently used action thresholds differed from unprotected plots only in the 2018 Louisiana experiment. Results from these experiments indicate insecticidal protection of susceptible sorghum cultivars remains critical throughout much of the southern United States. Further research is needed to develop integrated management programs that incorporate fertilization manipulation, cultivar resistance, and insecticidal control.


2021 ◽  
Vol 6 (1) ◽  
pp. 37-43
Author(s):  
Gary W. Marek ◽  
Thomas H. Marek ◽  
Steven R. Evett ◽  
Yong Chen ◽  
Kevin R. Heflin ◽  
...  

Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 51
Author(s):  
Francisco Muñoz-Arriola ◽  
Tarik Abdel-Monem ◽  
Alessandro Amaranto

Common pool resource (CPR) management has the potential to overcome the collective action dilemma, defined as the tendency for individual users to exploit natural resources and contribute to a tragedy of the commons. Design principles associated with effective CPR management help to ensure that arrangements work to the mutual benefit of water users. This study contributes to current research on CPR management by examining the process of implementing integrated management planning through the lens of CPR design principles. Integrated management plans facilitate the management of a complex common pool resource, ground and surface water resources having a hydrological connection. Water governance structures were evaluated through the use of participatory methods and observed records of interannual changes in rainfall, evapotranspiration, and ground water levels across the Northern High Plains. The findings, documented in statutes, field interviews and observed hydrologic variables, point to the potential for addressing large-scale collective action dilemmas, while building on the strengths of local control and participation. The feasibility of a “bottom up” system to foster groundwater resilience was evidenced by reductions in groundwater depths of 2 m in less than a decade.


2021 ◽  
Vol 22 (13) ◽  
pp. 7129
Author(s):  
Desalegn D. Serba ◽  
Xiaoxi Meng ◽  
James Schnable ◽  
Elfadil Bashir ◽  
J. P. Michaud ◽  
...  

The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.


Sign in / Sign up

Export Citation Format

Share Document