scholarly journals Disappearance of Both the BCR/ABL1 Fusion Gene and the JAK2V617F Mutation with Dasatinib Therapy in a Patient with Imatinib-Resistant Chronic Myelogenous Leukemia

2012 ◽  
Vol 52 (2) ◽  
pp. 145-147 ◽  
Author(s):  
Koiti Inokuchi ◽  
Hiroki Yamaguchi ◽  
Hayato Tamai ◽  
Kazuo Dan
2005 ◽  
Vol 157 (2) ◽  
pp. 104-108 ◽  
Author(s):  
Masahide Yamamoto ◽  
Kazuhiko Kakihana ◽  
Tetsuya Kurosu ◽  
Naomi Murakami ◽  
Osamu Miura

Blood ◽  
2005 ◽  
Vol 105 (7) ◽  
pp. 2733-2740 ◽  
Author(s):  
Baijun Fang ◽  
Chunmei Zheng ◽  
Lianming Liao ◽  
Qin Han ◽  
Zhao Sun ◽  
...  

AbstractOverwhelming evidence from leukemia research has shown that the clonal population of neoplastic cells exhibits marked heterogeneity with respect to proliferation and differentiation. There are rare stem cells within the leukemic population that possess extensive proliferation and self-renewal capacity not found in the majority of the leukemic cells. These leukemic stem cells are necessary and sufficient to maintain the leukemia. Interestingly, the BCR/ABL fusion gene, which is present in chronic myelogenous leukemia (CML), was also detected in the endothelial cells of patients with CML, suggesting that CML might originate from hemangioblastic progenitor cells that can give rise to both blood cells and endothelial cells. Here we isolated fetal liver kinase-1–positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of 17 Philadelphia chromosome–positive (Ph+) patients with CML and found that these cells could differentiate into malignant blood cells and phenotypically defined endothelial cells at the single-cell level. These findings provide direct evidence for the first time that rearrangement of the BCR/ABL gene might happen at or even before the level of hemangioblastic progenitor cells, thus resulting in detection of the BCR/ABL fusion gene in both blood and endothelial cells.


Blood ◽  
1994 ◽  
Vol 84 (2) ◽  
pp. 601-607 ◽  
Author(s):  
AM Tari ◽  
SD Tucker ◽  
A Deisseroth ◽  
G Lopez-Berestein

Abstract Chronic myelogenous leukemia (CML) is a hematologic malignancy characterized by the presence of the Philadelphia (Ph) chromosome. Bcr- abl, the fusion gene associated with the Ph chromosome, expresses a p210bcr-abl protein that promotes a selective expansion of mature myeloid progenitor cells. Methylphosphonate (MP) oligodeoxynucleotides complementary to specific regions of the bcr-abl mRNA were incorporated in liposomes. We studied the effects of liposomal MP (L-MP) on the growth inhibition of CML-like cell lines. L-MP targeted to the breakpoint junctions of the bcr-abl mRNA inhibited the growth of CML cells. Fifty percent inhibition was achieved at approximately 1 mumol/L of L-MP oligonucleotide concentrations. The inhibitory effect was selective because growth inhibition was observed only with CML but not with control cell lines. Moreover, CML cell growth inhibition was dependent on the sequence of the MP oligodeoxynucleotides incorporated in the liposomes. The growth inhibition of CML cells by L-MP resulted from selective inhibition of the expression of the p210bcr-abl protein.


Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2162-2170 ◽  
Author(s):  
LH Leopold ◽  
SK Shore ◽  
TA Newkirk ◽  
RM Reddy ◽  
EP Reddy

Chronic myelogenous leukemia is characterized by the Philadelphia chromosome, which at the molecular level results from the fusion of the bcr gene on chromosome 22 and the abl gene on chromosome 9. The bcr-abl fusion gene encodes a novel tyrosine kinase with transforming activity. In this study, we have synthesized a multi-unti ribozyme that targets bcr-abl mRNA. In vitro ribozyme cleavage reactions show increased cleavage efficiency of this multi-unit ribozyme compared with single or double ribozymes. The multiunit ribozyme was then transfected into murine myeloblasts transformed with the bcr-abl gene (32D cells). Ribozyme transfection was accomplished either by liposomes or using follic acid-polylysine as a carrier. Multi-unit ribozyme transfection reduced the level of bcr-abl mRNA 3 logs when transfected via folate receptor-mediated uptake into transformed 32D cells. These results suggest that a multi-unit ribozyme could be an effective therapeutic agent for the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia.


2010 ◽  
Vol 51 (4) ◽  
pp. 583-591 ◽  
Author(s):  
Gianantonio Rosti ◽  
Fausto Castagnetti ◽  
Gabriele Gugliotta ◽  
Francesca Palandri ◽  
Giovanni Martinelli ◽  
...  

1998 ◽  
Vol 104 (1) ◽  
pp. 57-60 ◽  
Author(s):  
Wei-Tong Hsu ◽  
Harvey Preisler ◽  
Katarina Szego ◽  
Rita Sprudzs ◽  
Xue-Zhi Gao

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 698-698 ◽  
Author(s):  
Stephen K. Burley

Abstract The Philadelphia chromosome translocation creates a BCR-ABL fusion gene that encodes a constitutively active BCR-ABL tyrosine kinase, which gives rise to chronic myelogenous leukemia (CML). The clinical success of imatinib (Gleevec) demonstrated that BCR-ABL tyrosine kinase inhibitors can provide effective treatment for CML. However, some CML patients treated with imatinib develop resistance leading to disease progression. The majority of resistance is due to point mutations in BCR-ABL, which give rise to active mutant enzymes that are insensitive to imatinib. In all, ~30 imatinib-resistant BCR-ABL mutants have been identified in clinical isolates. The T315I mutant represents ~20% of clinically observed mutations, making it one of the most common causes of resistance. Second-generation BCR-ABL inhibitors, including AMN-107 and BMS-354825, inhibit many of the clinically relevant mutants but not T315I. Mutant T315I BCR-ABL is, therefore, an important and challenging target for discovery of CML therapeutics. We have applied a proprietary X-ray crystallographic fragment-based lead discovery platform (FASTTM) and structure-guided lead optimization to identify potent inhibitors of wild-type BCR-ABL and the four most common mutants, including T315I. Our lead discovery efforts yielded five chemical series that inhibit both wild-type (WT) and T315I BCR-ABL. Compounds in our most advanced lead series potently inhibit proliferation of K562 cells and Ba/F3 cells with WT BCR-ABL and the four major clinically relevant BCR-ABL mutations (T315I, E255K, M351T, Y253F; see below). Further details describing in vitro and in vivo profiling of these novel BCR-ABL T315I inhibitors will be presented. Ba/F3 cell proliferation for BCR-ABL Inhibitors (EC50, nM) BCR-ABL Form Imatinib AMN-107 BMS-354825 SGX-70430 WT 790 33 12 11 T315I > 10000 > 10000 > 10000 21 Y253F 5700 370 8 334 E255K 8300 350 7 77 M351T 2000 38 28 15 Control Assay Ba/F3 (T315I) + IL3 > 10000 > 10000 > 10000 > 10000


Sign in / Sign up

Export Citation Format

Share Document