scholarly journals Research on Invulnerability of Wireless Sensor Networks Based on Complex Network Topology Structure

2017 ◽  
Vol 13 (03) ◽  
pp. 100 ◽  
Author(s):  
Zhigang Zhao

<p><span style="font-family: 'Times New Roman',serif; font-size: 12pt; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;"><span style="font-family: 'Times New Roman',serif; font-size: 12pt; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">For real-world wireless sensor networks (WSNs), the invulnerability of the network is very critical, because a cascading failure would cause a serious effect on the whole network performance. Network survivability is closely dependent on the topology structure of a network. In this paper, [Note: If you use "firstly," you need to add "secondly," "thirdly,"... "finally" throughout this paragraph; I don't see a need for this here] we meticulously study the topology characteristics of WSNs based on the complex network theory. According to scale-free and small-world features of complex networks, the nodes of WSNs are divided into different types, including common node, super node, and sink node. From the point of view of invulnerability in complex networks, the influence of different types of nodes on the sensor networks' invulnerability is analyzed. Simulation experiments show that adding super nodes to the WSNs would significantly improve network survivability.</span></span></p>

2012 ◽  
Vol 546-547 ◽  
pp. 1276-1282 ◽  
Author(s):  
Wen Hong Xiao ◽  
Xiang Dong Cai

The key issue of wireless sensor networks is to balance the energy costs of the entire network, to enhance the robustness of the entire sensor network. Sensor networks as a special kind of complex network, in particular, environmental constraints, and more from the traditional complex networks, such as Internet networks, ecological networks, social networks, is to introduce a way of wireless sensor networks way of complex networks theory and analytical method, the key lies in, which is a successful model of complex network theory and analysis methods, more suitable for the application of wireless sensor networks, in order to achieve certain characteristics of some wireless sensor networks to optimize the network. Considering multi-hop transmission of sensor network, this paper has proposed a maximum restriction on the communication radius of each sensor node; in order to improve the efficiency of energy consumption and maintain the sparsely of the entire network, this paper has also added a minimum restriction on the communication radius of each sensor node to the improved model; to balance the energy consumption of the entire network, The simulation results show that proposed improvements to the entire network more robust to random failure and energy costs are more balanced and reasonable. This is more applicable to wireless sensor networks.


Author(s):  
Ibrahiem Mahmoud Mohamed El Emary

This chapter gives a brief background on network management and how it is integrated into sensor network as well as the application of computational intelligence techniques in managing wireless sensor networks. Also discussed how Genetic Algorithms work in common and how they can be applied to sensor networks. Among the major management tasks rely on consumption power management, so there are many challenges associated with sensor networks but the primary challenge is energy consumption. Sensor networks are typically have little human interaction and are installed with limited battery supplies. This makes energy conservation a critical issue in deployed WSNs. All types of networks require monitoring and maintenance. A service that supplies a set of tools and applications that assist a network manager with these tasks is network management. It includes the administration of networks and all associated components. While all networks require some form of network management, different types of networks may stress certain aspects of network management. Some networks may also impose new tasks on network management. There are different types of network management architectures: centralized, hierarchical and distributed. In a centralized approach, one central server performs the role of the network management application. A hierarchical architecture will include multiple platforms, typically one server and several clients, performing network management functions.


2017 ◽  
Vol 13 (03) ◽  
pp. 113
Author(s):  
Wenjin Yu ◽  
Yong Li ◽  
Yuangeng Xu

<span style="font-family: 'Times New Roman',serif; font-size: 12pt; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">With the wide application of the wireless sensor network, the security of the sensor network is becoming increasingly important. In this paper, based on node ranging, a new intrusion node detection algorithm has been proposed for external pseudo-node detection in wireless sensor networks. The presence of the nodes under copying-attack and the pseudo-nodes in the network can be detected through inter-node ranging with appropriate use of various sensors of nodes themselves and comprehensive analysis of ranging results. Operating in a stand-alone or embedded manner, this method has remedied the defects in the traditional principle of attack detection. The simulation results show that the proposed method has excellent applicability in wireless sensor security detection.</span>


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Changjian Deng

Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks.


2011 ◽  
Vol 162 (4) ◽  
pp. 7-27
Author(s):  
Henryk ŁUKASIEWICZ

The aim of this publication is to introduce the issues connected with the work of sensors for military purposes. It explains the theoretical and practical aspects of the identification capabilities and the use of the different types of sensors in a multi-sensor wireless network. Very up-to-date is the use of technical devices to monitor the areas occupied by the enemy and which are hard to reach. Over the last few years, the possibility of gaining updated information without risking soldiers’ lives has become very important.Numerous telecoms have been influenced by the development of new technologies. They have begun implementing technologies connected with communication and the construction of sensors for industrial and military purposes.


Sign in / Sign up

Export Citation Format

Share Document