THEORETICAL AND PRACTICAL ASPECTS OF MILITARY USE OF WIRELESS SENSOR NETWORKS

2011 ◽  
Vol 162 (4) ◽  
pp. 7-27
Author(s):  
Henryk ŁUKASIEWICZ

The aim of this publication is to introduce the issues connected with the work of sensors for military purposes. It explains the theoretical and practical aspects of the identification capabilities and the use of the different types of sensors in a multi-sensor wireless network. Very up-to-date is the use of technical devices to monitor the areas occupied by the enemy and which are hard to reach. Over the last few years, the possibility of gaining updated information without risking soldiers’ lives has become very important.Numerous telecoms have been influenced by the development of new technologies. They have begun implementing technologies connected with communication and the construction of sensors for industrial and military purposes.

Author(s):  
Ibrahiem Mahmoud Mohamed El Emary

This chapter gives a brief background on network management and how it is integrated into sensor network as well as the application of computational intelligence techniques in managing wireless sensor networks. Also discussed how Genetic Algorithms work in common and how they can be applied to sensor networks. Among the major management tasks rely on consumption power management, so there are many challenges associated with sensor networks but the primary challenge is energy consumption. Sensor networks are typically have little human interaction and are installed with limited battery supplies. This makes energy conservation a critical issue in deployed WSNs. All types of networks require monitoring and maintenance. A service that supplies a set of tools and applications that assist a network manager with these tasks is network management. It includes the administration of networks and all associated components. While all networks require some form of network management, different types of networks may stress certain aspects of network management. Some networks may also impose new tasks on network management. There are different types of network management architectures: centralized, hierarchical and distributed. In a centralized approach, one central server performs the role of the network management application. A hierarchical architecture will include multiple platforms, typically one server and several clients, performing network management functions.


Author(s):  
Ghassan Samara ◽  
Mohammad Hassan ◽  
Yahya Zayed

Wireless sensor networks (WSNs) has a practical ability to link a set of sensors to build a wireless network that can be accessed remotely; this technology has become increasingly popular in recent years. Wi-Fi-enabled sensor networks (WSNs) are used to gather information from the environment in which the network operates. Many obstacles prevent wireless sensor networks from being used in a wide range of fields. This includes maintaining network stability and extending network life. In a wireless network, sensors are the most essential component. Sensors are powered by a battery that has a finite amount of power. The battery is prone to power loss, and the sensor is therefore rendered inoperative as a result. In addition, the growing number of sensor nodes off-site affects the network's stability. The transmission and reception of information between the sensors and the base consumes the most energy in the sensor. An Intelligent Vice Cluster Head Selection Protocol is proposed in this study (IVC LEACH). In order to achieve the best performance with the least amount of energy consumption, the proposed hierarchical protocol relies on a fuzzy logic algorithm using four parameters to calculate the value of each node in the network and divides them into three hierarchical levels based on their value. This improves network efficiency and reliability while extending network life by 50 percent more than the original Low Energy Adaptive Clustering Hierarchy protocol. Keywords: Wireless Sensor Networks, Sensors, Communication Protocol, Fuzzy logic, Leach protocol.


Author(s):  
Дмитро Дмитрович Соколов ◽  
Вікторія Юріївна Мерлак ◽  
Олександр Олександрович Орєхов ◽  
Анатолій Павлович Плахтеев

The article is devoted to the development of a monitoring system based on wireless sensor networks. The purpose of the article is to implement a system for environmental monitoring using wireless sensor networks, as well as its application in an apiary. Wireless sensor networks and their participation in environmental monitoring were investigated, and the interaction of a wireless network and data transfer protocols were described. The monitoring system was reviewed and analyzed, as well as systems in which monitoring is already applied. An experiment was conducted in which it was checked at what maximum distance the temperature and humidity parameters can be transmitted, the experiment was conducted with obstacles and without obstruction. Routing algorithms were examined how they work and how parameters (temperature and humidity) are transferred from sensors to the server. A prototype of a ground-based monitoring system for environmental monitoring was developed based on the wireless technology of building Zigbee sensor networks, taking into account the fact that new nodes can be added to this network or completely replaced. It was also found a solution to how to apply a wireless network in such an area as beekeeping. A mesh topology was selected and the physical devices that are the nodes of the network are separated. Nodes were also designed using as the base station for Arduino sensors and as ZigBee database modules from Digi called XBee. A study of these nodes on the noise immunity and stability of data transmission using sensors of flame, smoke, and temperature with humidity. The study revealed that XBee nodes are very unstable working next to Wi-Fi routers and in case of interference in the form of a forest. A statement of the problem was formed, which showed the relevance of the given system, why it is needed, who will be able to apply it, and also what the system contains and how it works. The functions that the program performs are listed. The conclusion is formulated on the result of the experiment, as well as how the system can be further upgraded, what can be added and what parameters can still be observed.


2014 ◽  
Vol 687-691 ◽  
pp. 1864-1867
Author(s):  
Xiao Wen Qi ◽  
Zhi Ping Hao

As a new short-range, low-speed and low-power wireless network technology, ZigBee smart design is ideal for campus wireless sensor networks. Therefore, in order to study how to use zigBee achieve smart campus applications has a very important practical value, on the basis of technology and research Zigbee wireless smart construction on campus and abroad, combined with our practical needs of wireless smart campus, put forward a set of Zigbee-based wireless smart campus solution.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaogang Chen

With the rapid development of Internet of things and information technology, wireless sensor network technology is widely used in industrial monitoring. However, limited by the architecture characteristics, software and hardware characteristics, and complex external environmental factors of wireless sensor networks, there are often serious abnormalities in the monitoring data of wireless sensor networks, which further affect the judgment and response of users. Based on this, this paper optimizes and improves the fault detection algorithm of related abnormal data analysis in wireless sensor networks from two angles and verifies the algorithm at the same time. In the first level, aiming at the problem of insufficient spatial cooperation faced by the network abnormal data detection level, this paper first establishes a stable neighbor screening model based on the wireless network and filters and analyzes the reliability of the network cooperative data nodes and then establishes the detection data stability evaluation model by using the spatiotemporal correlation corresponding to the data nodes. Realize abnormal data detection. On the second level, aiming at the problem of wireless network abnormal event detection, this paper proposes a spatial clustering optimization algorithm, which mainly clusters the detection data flow in the wireless network time window through the clustering algorithm, and analyzes the clustering data, so as to realize the detection of network abnormal events, so as to retain the characteristics of events and further classify the abnormal data events. This paper will verify the realizability and superiority of the improved optimization algorithm through simulation technology. Experiments show that the fault detection rate based on abnormal data analysis is as high as 97%, which is 5% higher than the traditional fault detection rate. At the same time, the corresponding fault false detection rate is low and controlled below 1%. The efficiency of this algorithm is about 10% higher than that of the traditional algorithm.


Author(s):  
Rupinder Singh

A wireless network node network (WSN) is defined as being composed of a large number of small light weighted nodes called network node nodes with routing, processing and communication facilities, which are densely deployed in physical or environmental condition. Each of these nodes collects data and its purpose is to route this information back to a sink. WSN is highly constrained type of network, having network node nodes with more capabilities. All network node nodes in the wireless network node network are interact with each other by intermediated network node nodes. Physical parameters computations are power, energy, memory, communication range and bandwidth. Wireless ad-hoc networks mainly use broadcast communication. Upon deployment, network node nodes automatically collaborate and form a network, start collecting data without any input from the user. The proposed model has been improved for the route metric calculation along with node and link load availability information module to avoid the connectivity loopholes and link congestions. The proposed model results have been obtained in the form of various network performance parameters such as network load, transmission delay, throughput, energy consumption, etc. In wireless sensor networks, there are many types of attacks that can hinder or obstruct the data to be deliver to the authenticated node so in order to check which node is authenticated various algorithms have been proposed. There are various attacks like Denial of Service, Distributed Denial of Service and various types of Jamming attacks that can disrupt or deny the communication between sender and receiver. It is important to develop some powerful tools for network analysis, design and managing the performance optimization of the network. In this paper some of the most common attacks and threats are explained and the prevention that can be taken by using various tools is implemented. Also the different routes are configured if the particular route is not available. All the nodes and the attacks are been shown by using a simulator NS2.


2016 ◽  
Vol 79 ◽  
pp. 817-826 ◽  
Author(s):  
K. Hari Krishna ◽  
Y. Suresh Babu ◽  
Tapas Kumar

Sign in / Sign up

Export Citation Format

Share Document