scholarly journals Consolidation Drainage and Climate Change May Reduce Piping Plover Habitat in the Great Plains

2015 ◽  
Vol 7 (1) ◽  
pp. 4-13 ◽  
Author(s):  
Lisa A. McCauley ◽  
Michael J. Anteau ◽  
Max Post van der Burg

Abstract Many waterbird species utilize a diversity of aquatic habitats; however, with increasing anthropogenic needs to manage water regimes there is global concern over impacts to waterbird populations. The federally threatened piping plover (Charadrius melodus; hereafter plovers) is a shorebird that breeds in three habitat types in the Prairie Pothole Region of North Dakota, South Dakota, and Canada: riverine sandbars; reservoir shorelines; and prairie wetlands. Water surface areas of these habitats fluctuate in response to wet–dry periods; decreasing water surface areas expose shorelines that plovers utilize for nesting. Climate varies across the region so when other habitats are unavailable for plover nesting because of flooding, prairie wetlands may periodically provide habitat. Over the last century, many of the wetlands used by plovers in the Prairie Pothole Region have been modified to receive water from consolidation drainage (drainage of smaller wetlands into another wetland), which could eliminate shoreline nesting habitat. We evaluated whether consolidation drainage and fuller wetlands have decreased plover presence in 32 wetlands historically used by plovers. We found that wetlands with more consolidation drainage in their catchment and wetlands that were fuller had a lower probability of plover presence. These results suggest that plovers could have historically used prairie wetlands during the breeding season but consolidation drainage, climate change, or both have reduced available shoreline habitat for plovers through increased water levels. Prairie wetlands, outside of some alkali wetlands in the western portion of the region, are less studied as habitat for plovers when compared with river and reservoir shorelines. Our study suggests that these wetlands may have played a larger role in plover ecology than previously thought. Wetland restoration and conservation, through the restoration of natural hydrology, may be required to ensure that adequate habitat exists among the three habitat types in the face of existing or changing climate and to ensure long-term plover conservation.

2021 ◽  
Author(s):  
Zhe Zhang ◽  
Fei Chen ◽  
Michael Barlage ◽  
Lauren E Bortolotti ◽  
James Famiglietti ◽  
...  

2016 ◽  
Author(s):  
Tomasz Niedzielski ◽  
Matylda Witek ◽  
Waldemar Spallek

Abstract. We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal m orthophotomaps produced from the UAV-taken visual-light photographs of n sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on m dates. The logarithms of the fractions are later calculated, producing m samples of size n. In order to detect statistically significant increments of water surface areas between two orthophotomaps we apply the asymptotic and bootstrapped versions of the Student's t-test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (SW Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012–2014). We have found that it is possible to detect transitions between water surface areas produced by all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to: mean, intermediate and high stages; (2) from mean stages to: intermediate and high stages; (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows using on-demand UAV flights performed in near real-time as well as monitoring water levels of rivers in ungauged basins.


2020 ◽  
Vol 24 (2) ◽  
pp. 655-672 ◽  
Author(s):  
Zhe Zhang ◽  
Yanping Li ◽  
Michael Barlage ◽  
Fei Chen ◽  
Gonzalo Miguez-Macho ◽  
...  

Abstract. Shallow groundwater in the Prairie Pothole Region (PPR) is predominantly recharged by snowmelt in the spring and supplies water for evapotranspiration through the summer and fall. This two-way exchange is underrepresented in current land surface models. Furthermore, the impacts of climate change on the groundwater recharge rates are uncertain. In this paper, we use a coupled land–groundwater model to investigate the hydrological cycle of shallow groundwater in the PPR and study its response to climate change at the end of the 21st century. The results show that the model does a reasonably good job of simulating the timing of recharge. The mean water table depth (WTD) is well simulated, except for the fact that the model predicts a deep WTD in northwestern Alberta. The most significant change under future climate conditions occurs in the winter, when warmer temperatures change the rain/snow partitioning, delaying the time for snow accumulation/soil freezing while advancing early melting/thawing. Such changes lead to an earlier start to a longer recharge season but with lower recharge rates. Different signals are shown in the eastern and western PPR in the future summer, with reduced precipitation and drier soils in the east but little change in the west. The annual recharge increased by 25 % and 50 % in the eastern and western PPR, respectively. Additionally, we found that the mean and seasonal variation of the simulated WTD are sensitive to soil properties; thus, fine-scale soil information is needed to improve groundwater simulation on the regional scale.


Wetlands ◽  
2016 ◽  
Vol 36 (S2) ◽  
pp. 445-459 ◽  
Author(s):  
Valerie A. Steen ◽  
Susan K. Skagen ◽  
Cynthia P. Melcher

PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e100034 ◽  
Author(s):  
Neal D. Niemuth ◽  
Kathleen K. Fleming ◽  
Ronald E. Reynolds

2017 ◽  
Vol 8 (2) ◽  
pp. 513-529 ◽  
Author(s):  
Brian A. Tangen ◽  
Raymond G. Finocchiaro

Abstract The enhancement of agricultural lands through the use of artificial drainage systems is a common practice throughout the United States, and recently the use of this practice has expanded in the Prairie Pothole Region. Many wetlands are afforded protection from the direct effects of drainage through regulation or legal agreements, and drainage setback distances typically are used to provide a buffer between wetlands and drainage systems. A field study was initiated to assess the potential for subsurface drainage to affect wetland surface-water characteristics through a reduction in precipitation runoff, and to examine the efficacy of current U.S. Department of Agriculture drainage setback distances for limiting these effects. Surface-water levels, along with primary components of the catchment water balance, were monitored over 3 y at four seasonal wetland catchments situated in a high-relief terrain (7–11% slopes). During the second year of the study, subsurface drainage systems were installed in two of the catchments using drainage setbacks, and the drainage discharge volumes were monitored. A catchment water-balance model was used to assess the potential effect of subsurface drainage on wetland hydrology and to assess the efficacy of drainage setbacks for mitigating these effects. Results suggest that overland precipitation runoff can be an important component of the seasonal water balance of Prairie Pothole Region wetlands, accounting on average for 34% (19–49%) or 45% (39–49%) of the annual (includes snowmelt runoff) or seasonal (does not include snowmelt) input volumes, respectively. Seasonal (2014–2015) discharge volumes from the localized drainage systems averaged 81 m3 (31–199 m3), and were small when compared with average combined inputs of 3,745 m3 (1,214–6,993 m3) from snowmelt runoff, direct precipitation, and precipitation runoff. Model simulations of reduced precipitation runoff volumes as a result of subsurface drainage systems showed that ponded wetland surface areas were reduced by an average of 590 m2 (141–1,787 m2), or 24% (3–46%), when no setbacks were used (drainage systems located directly adjacent to wetland). Likewise, wetland surface areas were reduced by an average of 141 m2 (23–464 m2), or 7% (1–28%), when drainage setbacks (buffer) were used. In totality, the field data and model simulations suggest that the drainage setbacks should reduce, but not eliminate, impacts to the water balance of the four wetlands monitored in this study that were located in a high-relief terrain. However, further study is required to assess the validity of these conclusions outside of the limited parameters (e.g., terrain, weather, soils) of this study and to examine potential ecological effects of altered wetland hydrology.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 269 ◽  
Author(s):  
Brian A. Tangen ◽  
Sheel Bansal

Hydrologic margins of wetlands are narrow, transient zones between inundated and dry areas. As water levels fluctuate, the dynamic hydrology at margins may impact wetland greenhouse gas (GHG) fluxes that are sensitive to soil saturation. The Prairie Pothole Region of North America consists of millions of seasonally-ponded wetlands that are ideal for studying hydrologic transition states. Using a long-term GHG database with biweekly flux measurements from 88 seasonal wetlands, we categorized each sample event into wet to wet (W→W), dry to wet (D→W), dry to dry (D→D), or wet to dry (W→D) hydrologic states based on the presence or absence of ponded water from the previous and current event. Fluxes of methane were 5-times lower in the D→W compared to W→W states, indicating a lag ‘ramp-up’ period following ponding. Nitrous oxide fluxes were highest in the W→D state and accounted for 20% of total emissions despite accounting for only 5.2% of wetland surface area during the growing season. Fluxes of carbon dioxide were unaffected by transitions, indicating a rapid acclimation to current conditions by respiring organisms. Results of this study highlight how seasonal drying and re-wetting impact GHGs and demonstrate the importance of hydrologic transitions on total wetland GHG balance.


PLoS ONE ◽  
2014 ◽  
Vol 9 (6) ◽  
pp. e96747 ◽  
Author(s):  
Valerie Steen ◽  
Susan K. Skagen ◽  
Barry R. Noon

Sign in / Sign up

Export Citation Format

Share Document