P-Wave Attenuation in Reservoir and Non-Reservoir Rock

Author(s):  
J. Dvorkin ◽  
G. Mavko
Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 755-765 ◽  
Author(s):  
Xinhua Sun ◽  
Xiaoming Tang ◽  
C. H. (Arthur) Cheng ◽  
L. Neil Frazer

In this paper, a modification of an existing method for estimating relative P-wave attenuation is proposed. By generating synthetic waveforms without attenuation, the variation of geometrical spreading related to changes in formation properties with depth can be accounted for. With the modified method, reliable P- and S-wave attenuation logs can be extracted from monopole array acoustic waveform log data. Synthetic tests show that the P- and S-wave attenuation values estimated from synthetic waveforms agree well with their respective model values. In‐situ P- and S-wave attenuation profiles provide valuable information about reservoir rock properties. Field data processing results show that this method gives robust estimates of intrinsic attenuation. The attenuation profiles calculated independently from each waveform of an eight‐receiver array are consistent with one another. In fast formations where S-wave velocity exceeds the borehole fluid velocity, both P-wave attenuation ([Formula: see text]) and S-wave attenuation ([Formula: see text]) profiles can be obtained. P- and S-wave attenuation profiles and their comparisons are presented for three reservoirs. Their correlations with formation lithology, permeability, and fractures are also presented.


Geophysics ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. T155-T164
Author(s):  
Wanting Hou ◽  
Li-Yun Fu ◽  
José M. Carcione ◽  
Zhiwei Wang ◽  
Jia Wei

Thermoelasticity is important in seismic propagation due to the effects related to wave attenuation and velocity dispersion. We have applied a novel finite-difference (FD) solver of the Lord-Shulman thermoelasticity equations to compute synthetic seismograms that include the effects of the thermal properties (expansion coefficient, thermal conductivity, and specific heat) compared with the classic forward-modeling codes. We use a time splitting method because the presence of a slow quasistatic mode (the thermal mode) makes the differential equations stiff and unstable for explicit time-stepping methods. The spatial derivatives are computed with a rotated staggered-grid FD method, and an unsplit convolutional perfectly matched layer is used to absorb the waves at the boundaries, with an optimal performance at the grazing incidence. The stability condition of the modeling algorithm is examined. The numerical experiments illustrate the effects of the thermoelasticity properties on the attenuation of the fast P-wave (or E-wave) and the slow thermal P-wave (or T-wave). These propagation modes have characteristics similar to the fast and slow P-waves of poroelasticity, respectively. The thermal expansion coefficient has a significant effect on the velocity dispersion and attenuation of the elastic waves, and the thermal conductivity affects the relaxation time of the thermal diffusion process, with the T mode becoming wave-like at high thermal conductivities and high frequencies.


2016 ◽  
Vol 13 (4) ◽  
pp. 649-657 ◽  
Author(s):  
Yi-Yuan He ◽  
Tian-Yue Hu ◽  
Chuan He ◽  
Yu-Yang Tan

2012 ◽  
Vol 61 ◽  
pp. 420-433 ◽  
Author(s):  
A.M. Ekanem ◽  
J. Wei ◽  
X.-Y. Li ◽  
M. Chapman ◽  
I.G. Main

1976 ◽  
Vol 66 (5) ◽  
pp. 1609-1622 ◽  
Author(s):  
Zoltan A. Der ◽  
Thomas W. McElfresh

abstract Average Q values were determined for ray paths to various LRSM stations from the SALMON nuclear explosion by taking ratios of observed P-wave spectra to the estimated source spectrum. Most Q values for P-wave paths throughout eastern North America are in the range 1600 to 2000 while those crossing over into the western United States are typically around 400 to 500. These differences in Q for intermediate distances can sufficiently explain the differences in the teleseismic event magnitudes observed, 0.3 to 0.4 magnitude units, in the western versus the eastern United States, if one assumes that the low Q layer under the western United States is located at depths less than 200 km.


2021 ◽  
Vol 40 (10) ◽  
pp. 716-722
Author(s):  
Yangjun (Kevin) Liu ◽  
Michelle Ellis ◽  
Mohamed El-Toukhy ◽  
Jonathan Hernandez

We present a basin-wide rock-physics analysis of reservoir rocks and fluid properties in Campeche Basin. Reservoir data from discovery wells are analyzed in terms of their relationship between P-wave velocity, density, porosity, clay content, Poisson's ratio (PR), and P-impedance (IP). The fluid properties are computed by using in-situ pressure, temperature, American Petroleum Institute gravity, gas-oil ratio, and volume of gas, oil, and water. Oil- and gas-saturated reservoir sands show strong PR anomalies compared to modeled water sand at equivalent depth. This suggests that PR anomalies can be used as a direct hydrocarbon indicator in the Tertiary sands in Campeche Basin. However, false PR anomalies due to residual gas or oil exist and compose about 30% of the total anomalies. The impact of fluid properties on IP and PR is calibrated using more than 30 discovery wells. These calibrated relationships between fluid properties and PR can be used to guide or constrain amplitude variation with offset inversion for better pore fluid discrimination.


Sign in / Sign up

Export Citation Format

Share Document