Using Geomechanics to Optimize Field Development Strategy of Deep Gas Reservoirs in Saudi Arabia

Author(s):  
M.S. Ahmed ◽  
T. Finkbeiner ◽  
A.A. Kannan
Author(s):  
Atheer Dheyauldeen ◽  
Omar Al-Fatlawi ◽  
Md Mofazzal Hossain

AbstractThe main role of infill drilling is either adding incremental reserves to the already existing one by intersecting newly undrained (virgin) regions or accelerating the production from currently depleted areas. Accelerating reserves from increasing drainage in tight formations can be beneficial considering the time value of money and the cost of additional wells. However, the maximum benefit can be realized when infill wells produce mostly incremental recoveries (recoveries from virgin formations). Therefore, the prediction of incremental and accelerated recovery is crucial in field development planning as it helps in the optimization of infill wells with the assurance of long-term economic sustainability of the project. Several approaches are presented in literatures to determine incremental and acceleration recovery and areas for infill drilling. However, the majority of these methods require huge and expensive data; and very time-consuming simulation studies. In this study, two qualitative techniques are proposed for the estimation of incremental and accelerated recovery based upon readily available production data. In the first technique, acceleration and incremental recovery, and thus infill drilling, are predicted from the trend of the cumulative production (Gp) versus square root time function. This approach is more applicable for tight formations considering the long period of transient linear flow. The second technique is based on multi-well Blasingame type curves analysis. This technique appears to best be applied when the production of parent wells reaches the boundary dominated flow (BDF) region before the production start of the successive infill wells. These techniques are important in field development planning as the flow regimes in tight formations change gradually from transient flow (early times) to BDF (late times) as the production continues. Despite different approaches/methods, the field case studies demonstrate that the accurate framework for strategic well planning including prediction of optimum well location is very critical, especially for the realization of the commercial benefit (i.e., increasing and accelerating of reserve or assets) from infilled drilling campaign. Also, the proposed framework and findings of this study provide new insight into infilled drilling campaigns including the importance of better evaluation of infill drilling performance in tight formations, which eventually assist on informed decisions process regarding future development plans.


2018 ◽  
Author(s):  
Humoud Almohammad ◽  
Abdullah Al-Derbass ◽  
Abdulaziz Alsubaie ◽  
Mohammed Bumajdad ◽  
Abdulaziz Al-Khamis ◽  
...  

2021 ◽  
pp. 9-22
Author(s):  
Yu. V. Vasiliev ◽  
M. S. Mimeev ◽  
D. A. Misyurev

The production of hydrocarbons is associated with a change in the physical and mechanical properties of oil and gas reservoirs under the influence of rock and reservoir pressures. Deformation of the reservoir due to a drop in reservoir pressure leads to the formation of various natural and man-made geodynamic and geomechanical phenomena, one of which is the formation of a subsidence trough of the earth's surface, which leads to a violation of the stability of field technological objects.In order to ensure geodynamic safety, a set of works is used, which includes analysis of geological and field indicators and geological and tectonic models of the field, interpretation of aerospace photographs, identification of active faults, construction of a predictive model of subsidence of the earth's surface of the field with identification of zones of geodynamic risk.This work was carried out to assess the predicted parameters of rock displacement processes during field development; even insignificant disturbances in the operation of technological equipment caused by deformation processes can cause significant damage.Prediction of rock displacements is possible only on the basis of a reservoir deformation model that adequately reflects the geomechanical and geodynamic processes occurring in the subsoil. The article presents a model of reservoir deformation with a drop in reservoir pressure, describes its numerical implementation, and performs calculations of schemes for typical development conditions.


2006 ◽  
Author(s):  
C.Y. McCants ◽  
Richard Hall ◽  
Brock Tuppeny ◽  
Keith Collins ◽  
Mohd. Khalid Jamiran and Stan Rae

2020 ◽  
Vol 52 (1) ◽  
pp. 664-678 ◽  
Author(s):  
M. Camm ◽  
L. E. Armstrong ◽  
A. Patel

AbstractThe Lower Cretaceous Britannia Field development is one of the largest and most significant undertaken on the UK Continental Shelf. Production started in 1998 via 17 pre-drilled development wells and was followed by a decade of intensive drilling, whereby a further 40 wells were added. In 2000 Britannia's plateau production of 800 MMscfgd supplied 8% of the UK's domestic gas requirements.As the field has matured, so too has its development strategy. Initial near-field development drilling targeting optimal reservoir thickness was followed by extended reach wells into the stratigraphic pinchout region. In 2014 a further strategy shift was made, moving from infill drilling to a long-term compression project to maximize existing production. During its 20-year history the Britannia Platform has undergone numerous changes. In addition to compression, production from five satellite fields has been routed through the facility: Caledonia (2003), Callanish and Brodgar (2008), Enochdhu (2015) and Alder (2016). A new field, Finlaggan, is due to be brought through Britannia's facilities in 2020, helping to maximize value from the asset for years to come.As Britannia marks 20 years of production it has produced c. 600 MMboe – surpassing the original ultimate recoverable estimate of c. 570 MMboe – and is still going strong today.


2011 ◽  
Author(s):  
Kristina Sevastianova ◽  
Mikhail Kuznetsov ◽  
Peter Tarasov ◽  
Vladimir Zilber ◽  
Sergey Nekhaev

2014 ◽  
Author(s):  
James Arukhe ◽  
Saleh Al Ghamdi ◽  
Shadi Hanbzazah ◽  
Abdulrahman Ahmari

Sign in / Sign up

Export Citation Format

Share Document