Resistivity measurements on the sea bottom

Author(s):  
O. B. Lile ◽  
K. R. Backe ◽  
H. Elvebakk ◽  
J. E. Buan
1994 ◽  
Vol 42 (7) ◽  
pp. 813-824 ◽  
Author(s):  
O.B. Lile ◽  
K.R. Backe ◽  
H. Elvebakk ◽  
J.E. Buan

1992 ◽  
Vol 29 (1) ◽  
pp. 73
Author(s):  
Ole Bernt Lile ◽  
Harald Elvebakk ◽  
Knut Reitan Backe ◽  
Jan Erik Buan

Author(s):  
N. E. Paton ◽  
D. de Fontaine ◽  
J. C. Williams

The electron microscope has been used to study the diffusionless β → β + ω transformation occurring in certain titanium alloys at low temperatures. Evidence for such a transformation was obtained by Cometto et al by means of x-ray diffraction and resistivity measurements on a Ti-Nb alloy. The present work shows that this type of transformation can occur in several Ti alloys of suitable composition, and some of the details of the transformation are elucidated by means of direct observation in the electron microscope.Thin foils were examined in a Philips EM-300 electron microscope equipped with a uniaxial tilt, liquid nitrogen cooled, cold stage and a high resolution dark field device. Selected area electron diffraction was used to identify the phases present and the ω-phase was imaged in dark field by using a (101)ω reflection. Alloys were water quenched from 950°C, thinned, and mounted between copper grids to minimize temperature gradients in the foil.


Author(s):  
W. E. King

A side-entry type, helium-temperature specimen stage that has the capability of in-situ electrical-resistivity measurements has been designed and developed for use in the AEI-EM7 1200-kV electron microscope at Argonne National Laboratory. The electrical-resistivity measurements complement the high-voltage electron microscope (HVEM) to yield a unique opportunity to investigate defect production in metals by electron irradiation over a wide range of defect concentrations.A flow cryostat that uses helium gas as a coolant is employed to attain and maintain any specified temperature between 10 and 300 K. The helium gas coolant eliminates the vibrations that arise from boiling liquid helium and the temperature instabilities due to alternating heat-transfer mechanisms in the two-phase temperature regime (4.215 K). Figure 1 shows a schematic view of the liquid/gaseous helium transfer system. A liquid-gas mixture can be used for fast cooldown. The cold tip of the transfer tube is inserted coincident with the tilt axis of the specimen stage, and the end of the coolant flow tube is positioned without contact within the heat exchanger of the copper specimen block (Fig. 2).


2009 ◽  
Vol 179 (2) ◽  
pp. 218
Author(s):  
V.I. Kaevitser ◽  
V.M. Razmanov
Keyword(s):  

Author(s):  
Norio YAMAKADO ◽  
Keiji HANDA ◽  
Yukinobu MIYASHITA
Keyword(s):  

2018 ◽  
Vol 1 (1) ◽  
pp. 21-25
Author(s):  
R Revathi ◽  
R Karunathan

Indium Telluride thin films were prepared by thermal evaporation technique. Films were annealed at 573K under vacuum for an hour. Both as-deposited and annealed films were used for characterization. The structural parameters were discussed on the basis of annealing effect for a film of thickness 1500 Å. Optical analysis was carried out on films of different thicknesses for both as - deposited and annealed samples. Both the as- deposited and annealed films exhibit direct and allowed transition. Electrical resistivity measurements were made in the temperature range of 303-473 K using Four-probe method. The calculated resistivity value is of the order of 10-6 ohm meter. The activation energy value decreases with increasing film thickness. The negative temperature coefficient indicates the semiconducting nature of the film.


2013 ◽  
Vol 5 (2) ◽  
Author(s):  
Syamsul Hidayat ◽  
Mulia Purba ◽  
Jorina Waworuntu

The purposes of this study were to determine the variability of temperature and its relation to regional processes in the Senunu Bay. The result showed clear vertical stratifications i.e., mixed layer thickness about 39-119 m with isotherm of 27°C, thermocline layer thickness about 83-204 m with isotherm of 14–26°C, and  the deeper layer from the thermocline lower limit to the sea bottom with isotherm <13°C. Temperature and the thickness of each layers varied with season in which during the Northwest Monsoon the temperature was warmer and the mixed layer was thicker than those during Southeast Monsoon. During Southeast Monsoon, the thermocline layer rose  about 24 m. The 2001, 2006, and 2009 (weak La Nina years),  the Indonesia Throughflow (ITF) carried warmer water, deepening thermocline depth and reducing upwelling strength.  In 2003 and 2008 thickening of mixed layer occurred in transition season  was believed  associated with the  arrival of Kelvin Wave from the west. In 2002 and 2004 (weak El Nino period,) ITF carries colder water shallowing thermocline depth and enhancing upwelling strength. In 2007 was believed to be related with positive IODM where the sea surface temperature were decreasing due to intensification of southeast wind which induced strong upwelling. The temperature spectral density of mixed layer and thermocline was influenced by annual, semi-annual, intra-annual and inter-annual period fluctuations. The cross-correlation between wind and temperature showed significant value in the annual period.  Keywords: temperature, thermocline, variability, ENSO, IODM.


Author(s):  
Michael Thiel ◽  
◽  
Michael Bower ◽  
Dzevat Omeragic ◽  

Sign in / Sign up

Export Citation Format

Share Document