P- and S-wave Seismic Imaging of Overdeepened Alpine Valleys

Author(s):  
H. Buness ◽  
T. Burschil ◽  
G. Gabriel
Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Lisa V. Block ◽  
C. H. Cheng ◽  
Michael C. Fehler ◽  
W. Scott Phillips

Seismic imaging using microearthquakes induced by hydraulic fracturing produces a three-dimensional (3-D), S-wave velocity model of the fractured zone, improves the calculated locations of the microearthquakes, and may lead to better estimates of fractureplane orientations, fracture density, and water flow paths. Such information is important for predicting the amount of heat energy that may be extracted from geothermal reservoir. A fractured zone was created at the Los Alamos Hot Dry Rock Reservoir in north-central New Mexico within otherwise impermeable basement rock by injecting [Formula: see text] of water into a borehole under high pressure at a depth of 3.5 km. Induced microearthquakes were observed using four borehole seismometers. The P-wave and S-wave arrival times have been inverted to find the 3-D velocity structures and the microearthquake locations and origin times. The inversion was implemented using the separation of parameters technique, and constraints were incorporated to require smooth velocity structures and to restrict the velocities within the fractured region to be less than or equal to the velocities of the unfractured basement rock. The rms amval time residuals decrease by 11–15 percent during the joint hypocenter-velocity inversion. The average change in the microearthquake locations is 20–27 m, depending on the smoothing parameter used. Tests with synthetic data imply that the absolute locations may improve by as much as 35 percent, while the relative locations may improve by 40 percent. The general S-wave velocity patterns are reliable, but the absolute velocity values are not uniquely determined. However, studies of inversions using various degrees of smoothing suggest that the S-wave velocities decrease by at least 13 percent in the most intensely fractured regions of the reservoir. The P-wave velocities are poorly constrained because the P-wave traveltime perturbations caused by the fluid-filled fractures are small compared to the amval time noise level. The significant difference in the relative signal-to-noise levels of the P-wave and S-wave arrival time data, coupled with the limited ray coverage, can produce a bias in the computed [Formula: see text] ratios, and corresponding systematic rotation of the microearthquake cluster. These adverse effects were greatly reduced by applying a [Formula: see text] lower bound based on the [Formula: see text] ratio of the unfractured basement rock.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. R341-R353 ◽  
Author(s):  
Chenlong Wang ◽  
Jiubing Cheng ◽  
Wiktor Waldemar Weibull ◽  
Børge Arntsen

Multicomponent seismic data acquisition can reveal more information about geologic structures and rock properties than single component acquisition. Full elastic wave seismic imaging, which uses multicomponent seismic to its full potential, is promising because it provides more opportunities to understand the material properties of the earth by the joint use of P- and S-waves. A prerequisite of seismic imaging is the availability of a reliable macrovelocity model. Migration velocity analysis for P-waves, which can fill that requirement for the P-wave velocity, has been well-studied, especially under the acoustic approximation. However, a reliable estimation of the S-wave velocities remains troublesome. Elastic wave-equation migration velocity analysis has the potential to build P- and S-wave velocity models together, but it inevitably suffers from the effects of mode coupling and conversion in the forward and adjoint wavefield reconstructions. We have developed a differential semblance optimization approach to sequentially invert the background P- and S-wave velocity models from extended PP- and PS-images in the subsurface offset domain. Preconditioning of the gradients with respect to the S-wave velocity through mode decoupling can improve the reliability of the optimization. Numerical investigations with synthetic examples demonstrate the effectiveness of gradient preconditioning and the feasibility of our migration velocity analysis approach for elastic wave imaging.


2016 ◽  
Vol 4 (4) ◽  
pp. SR1-SR18 ◽  
Author(s):  
Cédric Schmelzbach ◽  
Stewart Greenhalgh ◽  
Fabienne Reiser ◽  
Jean-François Girard ◽  
François Bretaudeau ◽  
...  

Seismic reflection imaging is a geophysical method that provides greater resolution at depth than other methods and is, therefore, the method of choice for hydrocarbon-reservoir exploration. However, seismic imaging has only sparingly been used to explore and monitor geothermal reservoirs. Yet, detailed images of reservoirs are an essential prerequisite to assess the feasibility of geothermal projects and to reduce the risk associated with expensive drilling programs. The vast experience of hydrocarbon seismic imaging has much to offer in illuminating the route toward improved seismic exploration of geothermal reservoirs — but adaptations to the geothermal problem are required. Specialized seismic acquisition and processing techniques with significant potential for the geothermal case are the use of 3D arrays and multicomponent sensors, coupled with sophisticated processing, including seismic attribute analysis, polarization filtering/migration, converted-wave processing, and the analysis of the diffracted wavefield. Furthermore, full-waveform inversion and S-wave splitting investigations potentially provide quantitative estimates of elastic parameters, from which it may be possible to infer critical geothermal properties, such as porosity and temperature.


2014 ◽  
Vol 2 (4) ◽  
pp. SL1-SL20 ◽  
Author(s):  
Ian F. Jones ◽  
Ian Davison

Seismic imaging of evaporite bodies is notoriously difficult due to the complex shapes of steeply dipping flanks, adjacent overburden strata, and the usually strong acoustic impedance and velocity contrasts at the sediment-evaporite interface. We consider the geology of salt bodies and the problems and pitfalls associated with their imaging such as complex raypaths, seismic velocity anisotropy, P- and S-wave mode conversions, and reflected refractions. We also review recent developments in seismic acquisition and processing, which have led to significant improvements in image quality and in particular, reverse time migration. We tried to call attention to the form, nature, and consequences of these issues for meaningful interpretation of the resulting images.


Sign in / Sign up

Export Citation Format

Share Document